Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 107 Abstracts search results
Document:
22-200
Date:
September 1, 2023
Author(s):
S. Fernando, C. Gunasekara, D. W. Law, M. C. M. Nasvi, S. Setunge, and R. Dissanayake
Publication:
Materials Journal
Volume:
120
Issue:
5
Abstract:
The creep and drying shrinkage of two alkali-activated concretes produced with low-calcium fly ash and rice husk ash (RHA) were investigated over a period of 1 year. The compressive strength of 100% low-calcium fly ash (100NFA) concrete and the concrete having 10% RHA replacement (10RHA) decreased from 49.8 to 37.7 MPa (7.22 to 5.47 ksi) and 30.2 to 18.3 MPa (4.38 to 2.65 ksi), respectively, between 28 and 365 days. The imbalance in the dissolution rate of the raw materials in the blended system (10RHA) could negatively influence the strength properties, which leads to poor matrix integrity and a highly porous structure when compared with 100NFA. The presence of the micro-aggregates due to the block polymerization provides the effect of increasing the aggregate content in the 100NFA concrete compared with the 10RHA concrete, which is hypothesized as one of the reasons creep and shrinkage properties deteriorated in 10RHA.
DOI:
10.14359/51738891
22-242
May 1, 2023
Brock D. Hedegaard, Timothy J. Clement, and Mija H. Hubler
3
A new semi-empirical concrete shrinkage and creep model called the CPRH Model is proposed and calibrated. The new model proposes a coupling between autogenous and drying shrinkage using a volume-average pore relative humidity and treats drying creep as an additional stress-dependent shrinkage, linking together all these phenomena. The proposed expressions are designed to facilitate traditional integral-type analysis, but also uniquely support ratetype calculations that can be leveraged by analysis software. Model calibration uses the Northwestern University (NU) database of creep and shrinkage tests to determine new model parameters. The proposed model uses minimal inputs that are often known or may be assumed by the design engineer. Comparison of the proposed model to historical time-dependent models indicates that the new model provides a superior fit over a wider range of inputs.
10.14359/51738709
22-144
March 1, 2023
Rodolfo Bonetti, Oguzhan Bayrak, Kevin Folliard, and Thanos Drimalas
2
An investigation was performed on the drying shrinkage and tensile drying creep characteristics of a nonproprietary ultra-high-performance concrete (UHPC) mixture. The mixture was formulated using metakaolin as the supplementary cementitious material (SCM) and limestone powder as the mineral filler. Cylindrical specimens with dimensions of 52 x 400 mm (2.05 x 16 in.) were fabricated and loaded at 7 and 11 days from casting to various stress levels for 90 days. Additional specimens were fabricated from a proprietary mixture with a silica fume-ground quartz formulation to study the effects of mixture composition. Simultaneous free drying shrinkage measurements were recorded in accompanying specimens placed in the same room environment. Attention was given to the effect of the casting orientation, age at loading, and mixture composition on the drying shrinkage and drying creep behavior of the samples. These tests show that the metakaolin-limestone powder mixture has significantly lower drying shrinkage and specific drying creep than the silica fume-ground quartz mixture. Additionally, the age at loading influences primary creep behavior while not affecting secondary creep at the same stress level. It seems that fiber orientation plays a significant role in the drying creep behavior of UHPC and that cracked UHPC under constant tensile stress undergoes a significant amount of fiber slip.
10.14359/51738492
18-301
March 1, 2021
Erik Stefan Bernard
118
It is well known that creep can affect the serviceability of concrete structures, including tunnel linings made using fiber-reinforced shotcrete (FRS). However, the possible effect of creep on the strength of structures is seldom explicitly considered in design. For cracked FRS loaded in tension or flexure, creep rupture of the fiber-concrete composite, either by pullout or rupture of fibers, can lead to structural collapse, at least when no alternative load path exists. In the present investigation, the influence of fiber geometry and surface roughness on creep rupture (expressed as the time-to- collapse) of FRS panel specimens subjected to a sustained flexural-tensile load has been assessed. The results suggest that geometric aspects of fiber design influence the propensity of the fiber composite to suffer creep rupture at a crack, and that collapse primarily occurs as a result of fiber pullout rather than tertiary creep of individual fibers. For the fibers presently investigated, geometric aspects of fiber design appear to exert a greater influence on creep rupture of the fiber composite than the properties of the material comprising the fibers.
10.14359/51730410
19-427
November 1, 2020
Brock D. Hedegaard
117
6
This study presents a multi-scale model for predicting multidecade basic creep of concrete. Aging of cement is modeled through hydration, densification, and polymerization of the calcium- silicate-hydrate (C-S-H) phases. The model accounts for the separate mechanisms of viscoelastic compliance and aging viscous flow of the C-S-H, and for the dissolution-precipitation of elastic and viscoelastic phases during hydration that causes apparent creep in the composite. Upscaling is performed in the time-domain simultaneously for all loading ages. The results show that short-term viscoelastic compliance observed from nanoindentation tests dominates short-term creep, but cannot explain long-term creep rates observed in macroscopic concrete creep tests. Such observations can only be replicated by considering viscous flow that develops over time scales unobservable by minutes-long tests on the microscale. Dissolution creep may explain some irreversible basic creep at very early ages but rapidly diminishes in relevance as the concrete continues to age.
10.14359/51728121
Results Per Page 5 10 15 20 25 50 100