ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 3185 Abstracts search results
Document:
24-358
Date:
March 25, 2025
Author(s):
Benjamin Worsfold, Dara Karać, and Jack Moehle
Publication:
Structural Journal
Abstract:
Steel columns are commonly attached to concrete foundations with groups of cast-in-place headed anchors. Recent physical tests and simulations have shown that the strength of these connections can be limited by concrete breakout failure. Four full-scale physical specimens of axially loaded columns attached to a foundation slab were tested, varying the shear reinforcement configuration in the slab. All specimens were governed by concrete breakout failure. The tests suggest that adequately placed distributed shear reinforcement can increase connection strength and displacement capacity. Steep cone failures were observed to limit the beneficial effect of shear reinforcement. Calibrated finite element models were used to investigate critical parameters such as the extent of the shear-reinforced region and bar spacing. A design approach is proposed to calculate connection strength by adding the strength of the concrete and the distributed shear reinforcement. Design detailing is discussed.
DOI:
10.14359/51746720
24-290
Peter H. Bischoff, Wassim Nasreddine, Hani Nassif
Design recommendations are presented for calculating the immediate deflection of cracked prestressed concrete members under service load. Inconsistency and sometimes confusion regarding the calculation of immediate deflection for the different approaches presently available highlight the need for a rational approach to computing deflection. The ACI 318-19 approach for reinforced (nonprestressed) concrete is broadened to include prestressed concrete. This involves the implementation of an effective moment of inertia taken together with an effective eccentricity of the prestressing steel used to define the effective curvature and/or camber from the prestressing force. Proposed revisions to ACI 318 are presented for prestressed Class T and Class C flexural members and clear steps are provided for calculating immediate deflection. The effectiveness of the new approach is validated against an extensive database of test results, showing reasonable accuracy and reliability in predicting deflections. The paper concludes with practical recommendations for implementation and a worked-out example to illustrate the proposed methodology. These findings aim to enhance the accuracy and consistency of deflection predictions in prestressed concrete design, contributing to better serviceability and performance of concrete structures.
10.14359/51746721
24-060
March 24, 2025
Muhammad Naveed, Asif Hameed , Ali Murtaza Rasool, Rashid Hameed, Danish Mukhtar
Materials Journal
Geopolymer concrete (GPC) is a progressive material with the capability to significantly reduce global industrial waste. The combination of industrial by-products with alkaline solutions initiates an exothermic reaction, termed geopolymerization, resulting in a carbon-negative concrete that lessens environmental impact. The fly ash-based GPC (FA-based GPC) displays noticeable variability in its mechanical properties due to differences in mix design ratios and curing methods. To address this challenge, we optimized the constituent proportions of GPC through a meticulous selection of nine independent variables. A thorough experimental database of 1242 experimental observations was assembled from the available literature, and artificial neural networks (ANN) were employed for compressive strength modeling. The developed ANN model underwent rigorous evaluation using statistical metrics such as R-values, R2 values, and mean square error (MSE). The statistical analysis revealed an absence of a direct correlation between compressive strength and independent variables, as well as a lack of correlation among the independent variables. However, the predicted compressive strength by the developed ANN model aligns well with experimental observations from the compiled database, with R2 values for the training, validation, and testing datasets determined to be 0.84, 0.74, and 0.77, respectively. Sensitivity analysis identified curing temperature and silica-to-alumina ratio as the most crucial independent variables. Furthermore, the research introduced a novel method for deriving a mathematical expression from the trained model. The developed mathematical expressions accurately predict compressive strength, demonstrating minimal errors when using the tan-sigmoid activation function. Prediction errors were within the range of (-0.79 – 0.77) MPa, demonstrating high accuracy. These equations offer a practical alternative in engineering design, bypassing the intricacies of the internal processes within the ANN.
10.14359/51746714
24-062
March 17, 2025
Abhishek Kumar and G Appa Rao
Lap splicing of longitudinal reinforcing bars in shear walls is often encountered in practice, and the transfer of forces in lap-spliced reinforcing bars to the surrounding concrete depends on the bond strength. Buildings with shear walls during an earthquake develop plastic hinges in the shear walls, particularly where the reinforcing bars are lap-spliced. Brittle failure is commonly observed in reinforcing bar lap-spliced shear walls, which needs to be minimized by choosing the appropriate percentage of lap-spliced reinforcing bars. Therefore, it is essential to address the detailing of the lap-spliced regions of reinforced concrete (RC) shear walls. Several seismic design codes provide guidelines on lap-spliced detailing in shear walls related to its location, length of lap-splice, confinement reinforcement, and percentage of reinforcing bars to be lap-spliced. In this study, the percentage of reinforcing bars to be lap-spliced at a section is examined with staggered lap-splicing of 100, 50, and 33% of longitudinal reinforcing bars, in addition to a control RC shear wall without lap-splicing. This study tested four half-scale RC shear walls with boundary element (BE), designed as per IS 13920 and ACI 318, under quasi-static reversed cyclic loading. From the experimental study, it is observed that the staggered lap splicing of reinforcing bars nominally reduces the performance of shear walls under cyclic load in terms of the reduced flexural strength, deformation capacity, energy dissipation, and ductility of the shear walls compared to the control shear wall without lap splicing. It is also observed that the unspliced reinforcing bars do not sustain the cyclic loading in staggered lap-splice after the post-peak. Current provisions of ACI 318, EC2, and IS 13920 recommend staggered lap-splice detailing in shear walls. However, from the current study, shear walls with different percentages of staggered lap splice show that the staggered lap-splice detailing in shear walls does not improve its seismic performance.
10.14359/51746673
24-136
Rozhin Farrokhi, Siamak Epackachi and Vahid Sadeghian
Accurate prediction of the cyclic response of reinforced concrete (RC) shear walls is critical for performance assessment of buildings under wind and earthquakes. Over the past few decades, various macro-models have been developed, based on different formulations and simplifying assumptions, to facilitate large-scale modeling of RC walls. However, there is limited research on the accuracy of these models for walls with different characteristics. This study evaluates the accuracy and application range of five prevalent macro-models using experimental results from 39 wall specimens with a wide range of design variables. Analytical and experimental results are compared in terms of cyclic load-deflection responses, failure modes, and a set of structural performance measures. The results indicate that while the evaluated macro-models can predict the behavior of shear walls reasonably well, there are important limitations that may restrict their application range. Strengths and weaknesses of each macro-model are identified to help engineers select the most suitable analysis method based on the characteristics of the wall.
10.14359/51746675
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer