ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 1226 Abstracts search results
Document:
22-189
Date:
March 24, 2025
Author(s):
S.H. Chu
Publication:
Materials Journal
Abstract:
The weakness of concrete in tension can be mitigated by developing fiber-reinforced concrete (FRC) to induce pseudo-ductility. However, enhancing the intrinsic tensile strength of the matrix in FRC has received little attention. In this regard, nanofibers, which can improve the intrinsic tensile properties of the matrix, were used in conjunction with microfibers to enhance intrinsic tensile strength. Different volumes of nanofibers (0.0–0.6%) and microfibers (0.0–2.0%) were tested, and various fresh and hardened properties were analyzed. Test results show that the superplasticizer dosage increased with both nanofiber and microfiber volume and that strength increased with microfiber volume, reaching an optimum point at a certain nanofiber dosage. Moreover, incorporating nanofibers and microfibers to develop multiscale FRC (MSFRC) significantly improved direct tensile strength and energy absorption. The synergy between nanofibers and microfibers was revealed both qualitatively and quantitatively, contributing to the advancement of FRC.
DOI:
10.14359/51746710
24-136
March 17, 2025
Rozhin Farrokhi, Siamak Epackachi and Vahid Sadeghian
Structural Journal
Accurate prediction of the cyclic response of reinforced concrete (RC) shear walls is critical for performance assessment of buildings under wind and earthquakes. Over the past few decades, various macro-models have been developed, based on different formulations and simplifying assumptions, to facilitate large-scale modeling of RC walls. However, there is limited research on the accuracy of these models for walls with different characteristics. This study evaluates the accuracy and application range of five prevalent macro-models using experimental results from 39 wall specimens with a wide range of design variables. Analytical and experimental results are compared in terms of cyclic load-deflection responses, failure modes, and a set of structural performance measures. The results indicate that while the evaluated macro-models can predict the behavior of shear walls reasonably well, there are important limitations that may restrict their application range. Strengths and weaknesses of each macro-model are identified to help engineers select the most suitable analysis method based on the characteristics of the wall.
10.14359/51746675
24-029
Sayyed Ali Dadvar, Salaheldin Mousa, Hamdy M. Mohamed, Ammar Yahia, and Brahim Benmokrane
10.14359/51746672
24-130
Linh Van Hong Bui, Hidehiko Sekiya, Boonchai Stitmannaithum
There is a need to model the complete responses of shear-critical beams strengthened with embedded through-section (ETS) fiber-reinforced polymer (FRP) bars. Here, a strategy is proposed to integrate two separate approaches, flexural‒shear deformation theory (FSDT) for element fields and a bonding-based method for ETS strengthening, into a comprehensive computation algorithm through localized behavior at the main diagonal crack. The use of force- and stress-based solutions in the algorithm that couple fixed and updated shear crack angle conditions for analyzing the shear resistance of ETS bars is investigated. The primary benefit of the proposed approach compared to single FSDT or existing models is that member performance is estimated in both the pre-peak and post-peak loading regimes in terms of load, deflection, strain, and cracking characteristics. All equations in the developed model are transparent, based on mechanics, and supported by validated empirical expressions. The rationale and precision of the proposed model are comprehensively verified based on the results obtained for 46 datasets. Extensive investigation of the different bond‒slip and concrete tension laws strengthens the insightfulness and effectiveness of the model.
10.14359/51746674
23-322
March 1, 2025
Yail J. Kim, Jun Wang, Woo-Tai Jung, Jae-Yoon Kang, and Jong-Sup Park
Volume:
122
Issue:
2
This paper presents the implications of creep-fatigue interactions for the long-term behavior of bulb-tee bridge girders prestressed with either steel strands or carbon fiber-reinforced polymer (CFRP) tendons. A large amount of weigh-in-motion data incorporating 194 million vehicles are classified to realistically represent live loads. Computational simulations are conducted as per the engagement of discrete autonomous entities in line with time- dependent material models. In general, the properties of CFRP tendons vary insignificantly over 100 years; however, the stress range of CFRP responds to fatigue cycles. Regarding prestress losses, the conventional method with initial material properties renders conservative predictions relative to refined approaches considering time-varying properties. The creep and fatigue effects alter the post-yield and post-cracking responses of steel- and CFRP-prestressed girders, respectively. From deformational capability standpoints, steel-prestressed girders are more vulnerable to fatigue in comparison with CFRP-prestressed ones. It is recommended that the fatigue truck and the compression limit of published specifications be updated to accommodate the ramifications of contemporary traffic loadings. Although the operational reliability of both girder types is satisfactory, CFRP-prestressed girders outperform their steel counterparts in terms of fatigue safety. Technical findings are integrated to propose design recommendations.
10.14359/51743304
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer