ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 629 Abstracts search results
Document:
23-106
Date:
May 1, 2025
Author(s):
Seyed Mohammad Hosseini, Salaheldin Mousa, Hamdy M. Mohamed, and Brahim Benmokrane
Publication:
Structural Journal
Volume:
122
Issue:
3
Abstract:
The geometry of arched (vertically curved) reinforced concrete (RC) members contributes to the development of additional stresses, affecting their flexural and shear strengths. This aspect of curvilinear RC members reinforced with glass fiber-reinforced polymer (GFRP) bars has not been reported in the literature. In addition, no specific design recommendations consider the effect of curvilinearity on the flexural and shear strengths of curved GFRP-RC members. This study has performed pioneering work in developing models to predict the flexural and shear strengths of curvilinear GFRP-RC members, with a focus on precast concrete tunnel lining segments. Eleven full-scale curvilinear GFRPreinforced tunnel segment specimens were tested under bending load as the experimental database. Then, a model was developed for predicting the flexural strength of curvilinear GFRP-RC members. This was followed by the development of two shear-strength prediction models based on the Modified Compression Field Theory (MCFT) and critical shear crack theory (CSCT). After comparing the experimental and analytical results, a parametric study was performed to evaluate the effect of different parameters on the flexural and shear strengths of curvilinear GFRP-reinforced members. The results indicate that neglecting the curvilinearity effect led to a 17% overestimation of the flexural strength, while the proposed models could predict the flexural strength of the specimens accurately. The proposed models based on the MCFT—referred to as the semi-simplified Modified Compression Field Theory (SSMCFT) and the improved simplified Modified Compression Field Theory (ISMCFT)—predicted the shear strength of the specimens with 28% conservativeness. In addition, the modified critical shear crack theory (MCSCT) model was 10% conservative in predicting the shear strength of curvilinear GFRP-RC members.
DOI:
10.14359/51745638
23-117
Mustafa M. Raheem and Hayder A. Rasheed
Extensive experimental verification has shown that the use of fiber-reinforced polymer (FRP) anchors in combination with externally bonded FRP composites increases the flexural capacity of existing reinforced concrete (RC) structures. Thus, a rational prediction model is introduced in this study so that fiber splay anchors may be accurately designed for practical strengthening applications. Simplified structural mechanics principles are used to build this model for capacity prediction of a group of fiber splay anchors used for FRP flexural strengthening. Three existing test series using fiber splay anchors to secure FRP-strengthened T-beams, block-scale, and one-way slabs were used to calibrate and verify the accuracy and applicability of the present model. The present model is shown to yield very accurate predictions when compared to the results of the block-scale specimen and eight different one-way slabs. The proposed model is also compared with the predictions of a design equation adapted from the case of channel shear connectors in composite concrete-steel construction. Results show a very promising correlation.
10.14359/51745639
23-298
Seyed Arman Hosseini, Ahmed Sabry Farghaly, Abolfazl Eslami, and Brahim Benmokrane
This study addressed a critical knowledge gap by examining the influence of staggering on the bond strength of lapped glass fiber-reinforced polymer (GFRP) bars in concrete members. It involved a comprehensive investigation of new-generation GFRP bars with varying staggering configurations in nine large-scale GFRP-reinforced concrete (RC) beams with a rectangular cross section of 300 x 450 mm (11.8 x 17.7 in.) and a length of 5200 mm (204.7 in.). The tests investigated splice strength with three staggering distances: 0, 1.0, and 1.3 times the splice length (ls) from center-to-center of two adjacent splices, and three splice lengths of 28, 38, and 45 times the bar diameter (db). Results revealed a slight improvement in ultimate load-carrying capacity (less than 10%) for partially and fully staggered splices compared to non-staggered ones, with the latter exhibiting a more ductile failure mode. The effect of staggering was consistent across different splice lengths, demonstrating that splice length was not a factor. Although staggering reduced flexural crack width, it increased the total number of cracks due to expanded splice regions. Bond strength improved with staggering, with gains of 4.0% and 8.0% for partially and fully staggered splices, respectively. ACI CODE- 440.11-22 provides more accurate predictions of the bond strength of lap-spliced GFRP bars than the other design codes, showing an average test-to-prediction ratio of 1.03 for non-staggered splices. Nevertheless, it requires some reconsiderations when it comes to staggered splices. To address this, a proposed modification factor was introduced to account for staggering conditions when calculating bond strength and splice length in ACI CODE-440.11-22.
10.14359/51745640
22-267
March 24, 2025
Zihao Shen and Wenguang Liu
Materials Journal
To constitute an alternative to ordinary fiber-reinforced polymer in the strengthening of existing structures, the tensile properties of polypropylene (PP) and polyethylene terephthalate (PET) fiber bundles in the outdoor thermal environment (80℃ and 105℃) were investigated. The fiber bundles were carefully removed from a woven textile and test specimens with a gauge length of 25 mm were fabricated. Based on the experiments, a Weibull distribution model of the tensile strength of the PP and PET fiber bundles was developed. Test results show that exposure temperature and time significantly affect the tensile strength, rupture strain, and elastic modulus of the PP and PET fiber bundles. The strength degradation of PP and PET fiber bundles is not obvious when exposed to 80℃. In contrast, on exposure to 105℃, The usage of them requires consideration of mechanical properties degradation. This study provides exact data for the use of PP and PET fiber bundles in outdoor thermal environments.
10.14359/51746711
24-029
March 17, 2025
Sayyed Ali Dadvar, Salaheldin Mousa, Hamdy M. Mohamed, Ammar Yahia, and Brahim Benmokrane
10.14359/51746672
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer