Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 31 Abstracts search results
Document:
22-388
Date:
December 1, 2023
Author(s):
R. M. Ghantous, V. Bui, S. Schaef, B. Fronczek, C. B. Jablonski, S. R. Reese, and W. J. Weiss
Publication:
Materials Journal
Volume:
120
Issue:
6
Abstract:
This study uses neutron radiography (NR) and visual inspection to quantify water penetration in concrete samples exposed to water pressure on one face. It provides experimental data regarding the impact of mixture proportions on the hydraulic permeability of concrete. Specifically, it illustrates the influence of water-cement ratio (w/c), curing duration, entrained air content, and coarse aggregate (CA) size and volume on water transport. In addition, this paper quantifies the impact of permeability-reducing admixtures (PRAs) on water transport in concrete. It was observed that decreasing the w/c and/or increasing the curing duration reduced the fluid transport. Liquid and powder PRAs efficiently reduced fluid transport in concrete without impacting the compressive strength. The liquid PRA showed more consistent results, likely due to better dispersion than the powder PRA. Fluid ingress in concrete samples appears to increase with entrained air content due to a lower degree of saturation (DOS) at the start of the test. Increasing the CA volume fraction or decreasing the CA size will increase the fluid transport in concrete due to an increase in the connectivity of the interfacial transition zone. The influence of entrained air content, curing duration, CA volume fraction, and CA size was less noticeable on mixtures with PRAs due to the higher density and low permeability of these samples compared to control samples.
DOI:
10.14359/51739150
20-113
January 1, 2022
Suad Al-Bahar, Jayasree Chakkamalayath, Antony Joseph, Amer Al-Arbeed, and Dana Dashti
119
1
The improvement of durability and service life of reinforced concrete structures in the marine environment with the incorporation of corrosion inhibitors has attracted significant attention in recent years. The present study aims to evaluate the performance of a commercially available organic corrosion inhibitor in protecting the steel reinforcement of concrete structures in marine conditions. The study was performed on a control mixture and a test mixture with water-cement ratios (w/c) of 0.4 and 0.6, providing aggressive laboratory and field environments following the recommendation of international standards for corrosion inhibitors assessments. Corrosion monitoring methods and visual inspection of reinforcing bars confirmed the effectiveness of migrating corrosion inhibitor in mitigating chloride-induced corrosion. The migratory properties of the corrosion inhibitor and its ability to densify the matrix microstructure were confirmed through scanning electron microscopy and X-ray photoelectron spectroscopy analyses.
10.14359/51733145
18-252
January 1, 2020
Deqiang Yang, Changwang Yan, Shuguang Liu, Ju Zhang, and Zhichao Hu
117
This paper reports the splitting tensile strength of concrete corroded by saline soil. The wet-dry cycle erosion test and splitting tensile test were performed on concrete cubic specimens with six different erosion inspection periods and a solution with the same concentration as the saline soil. The variation of chlorine and sulfate with erosion depth for different erosion inspection periods of corroded concrete, as well as the powder on the concrete within the erosion depth, were analyzed via X-ray diffraction (XRD). Combined with the parallel bar system, corroded concrete specimens were divided into corrosion and non-corrosion parts. Considering the corrosive effect of saline soil on the concrete specimen, the splitting tensile strength model of the corroded concrete in the saline soil area was established and compared with experimental values. The results show that the calculated values of the splitting tensile strength model established herein agreed with experimental values. The splitting tensile strength of concrete gradually decreased with the increasing erosion depth, and the erosion depth gradually deepened with the increasing wet-dry cycle time. This is because CaCO3, ettringite, gypsum, and Friedel’s salts were produced by reacting with concrete in the range of erosion, which resulted in the decrease of splitting tensile strength of concrete.
10.14359/51719077
18-290
July 1, 2019
Rajaram Dhole, Michael D. A. Thomas, Kevin J. Folliard, and Thano Drimalas
116
4
Fly ash concrete mixtures were tested for the chemical and physical sulfate attack. Concrete mixtures consisting of ratios of fly ashes, Type I cement, silica fume, and ultra-fine fly ash (UFFA) were tested. Four exposure conditions were simulated by subjecting the concrete specimens to: 1) immersion in 5% Na2SO4 solution; 2) wet-dry cycling in 5% Na2SO4 solution at 23°C (73°F, wet) and 38°C (100°F, dry); 3) immersion in saturated CaSO4 solution; and 4) wet-dry cycling in saturated CaSO4 solution at 23°C (73°F, wet) and 38°C (100°F, dry). Control specimens were stored in water at ambient temperature. Performance of the concrete mixtures was studied through visual inspection and by monitoring the changes in mass, length, and dynamic modulus of elasticity over time. It was found that improved sulfate resistance can be provided to the fly ash concrete by controlling water-cement ratio (w/c) and blending with Class F fly ash, UFFA, and silica fume.
10.14359/51716678
17-462
November 1, 2018
Daniel J. Pickel, Jeffrey S. West, and Abdulaziz Alaskar
115
An investigation was carried out on basalt fiber-reinforced concrete (BFRC) produced using various dosages of basalt fibers. The concrete mixture was designed with a target strength of 35 MPa (5075 psi), which is a typical strength for floor slabs and similar applications in which fiber reinforcement is often used. The concrete was tested for slump and air content in the fresh condition and for compressive strength, splitting tensile strength, flexural strength, and toughness in the hardened condition. Using these tests, the behavior of the BFRC was investigated and compared to fiber-reinforced concretes produced using similar dosages of polypropylene polyethylene synthetic fibers and crimped steel fibers. The basalt fibers were found to generally increase tensile and flexural strength (modulus of rupture), but were found to have very little effect on compressive strength and post-cracking behavior, and inspection found that the fibers had ruptured upon macrocracking.
10.14359/51710958
Results Per Page 5 10 15 20 25 50 100