International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 195 Abstracts search results

Document: 

24-429

Date: 

October 8, 2025

Author(s):

Mark Bediako and Timothy Kofi Ametefe

Publication:

Materials Journal

Abstract:

Portland Limestone Cement (PLC) has gained widespread use as the most accessible and sustainable blended cement in the market. However, in many African countries, including Ghana, the use of clay pozzolana in the concrete industry has primarily relied on Ordinary Portland Cement (OPC). In this study, PLC Type II/B-L was partially replaced with clay pozzolana at levels ranging from 10% to 50% by weight. The investigation included compressive strength testing, non-destructive evaluations using electrical surface resistivity, pulse velocity, and chloride penetration tests, targeting a characteristic strength of 30 MPa. Additionally, an environmental impact assessment based on the carbon footprint of both control and clay pozzolana concretes was conducted. The mix design followed the EN 206 standard. A total of 72 cubic moulds were produced for the strength test. The results showed that clay pozzolana concretes with between 10 and 20% replacement achieved strength values of 35 and 33 MPa, respectively, higher than the target of 30 MPa (4351.13 psi) strength at 28 days. However, mixtures with 30% to 50% replacement required extended curing periods of 60 to 90 days to reach the desired strength. At extended curing, 10-50% clay pozzolana replacement attained strength between 32 and 41 MPa. Non-destructive test results showed no direct correlation with compressive strength, confirming that different factors govern strength, resistivity, and pulse velocity. The environmental impact assessment revealed a 14 to 51% reduction in CSi and a 19 to 36% increase in CRi with 10 to 50% clay pozzolana (for CSi) and 10 to 40% (for CRi). The thermodynamic modelling also revealed that pozzolana contents below 30% primarily promoted pozzolanic reactions, enhancing performance compared to the control mix. Based on these results, 20–30% clay pozzolana replacement is recommended to ensure reliable performance, while higher levels (>30%) require further durability evaluation for long-term use.

DOI:

10.14359/51749251


Document: 

24-473

Date: 

October 8, 2025

Author(s):

Fulin Qu, Hanbing Zhao, Qiao Wang, Kejin Wang, Wengui Li

Publication:

Materials Journal

Abstract:

Building resilient infrastructure in chloride-rich environments presents significant challenges. This study examines the impact of nanosilica (NS) and ground granulated blast furnace slag (GGBFS) on chloride ingress in cement composites exposed to seawater, NaCl solution, and a combined NaCl-Na₂SO₄ solution. Analysis using microcharacterisation, BSE-EDS hypermaps, and thermodynamic modelling reveals that GGBFS enhances chloride binding by forming Friedel's salt (FSS) across all environments, effectively immobilizing chloride ions. NS further refines the cement matrix by densifying the calcium silicate hydrate (C-S-H) structure and generating additional C-S-H gels, improving physical chloride binding. This combined effect reduces porosity and strengthens resistance to chloride diffusion. Sulfate ions significantly influence hydration products and chloride binding, with excessive sulfate reducing FSS formation, thereby weakening chloride resistance. Sulfate may also convert FSS into monosulphate (AFm) and ettringite (AFt), altering chloride immobilization. Cement composites containing both GGBFS and NS demonstrated superior resistance to chloride and sulfate exposure, as confirmed by thermodynamic modelling. These findings provide insights into sulfate-chloride interactions and offer guidance for developing durable cementitious materials in aggressive environments.

DOI:

10.14359/51749257


Document: 

24-335

Date: 

September 1, 2025

Author(s):

Feyza Nur Sahan, W. Jason Weiss, and O. Burkan Isgor

Publication:

Materials Journal

Volume:

122

Issue:

5

Abstract:

The role of limestone (LS) powder replacement and changes in C-S-H due to pozzolanic reactions on the acid resistance of cementitious pastes are studied using thermodynamic modeling. Simulations are performed under equilibrium conditions while hydration products were exposed to increasing levels of sulfuric acid. LS replacement doesn’t show sacrificial characteristics against sulfuric acid attack, and LS acidification starts only after full consumption of portlandite, and most C-S-H. Increased LS replacement causes the dilution of the formed portlandite and C-S-H volumes, which results in their full consumption at lower acid concentrations than mixtures without LS replacement. Pozzolanic reactions of SCMs result in C-S-H phases with lower Ca/Si than OPC-only counterparts, increasing acid resistance. However, highly reactive and/or high-volume SCM replacements might further decrease the available portlandite, reducing the buffer acid resistance capacity. This issue is particularly critical for portland limestone cement-based systems.

DOI:

10.14359/51749035


Document: 

23-288

Date: 

August 1, 2024

Author(s):

Deep Tripathi, Richard Morin, Mohamed Lamine Kateb, and Arezki Tagnit-Hamou

Publication:

Materials Journal

Volume:

121

Issue:

4

Abstract:

Ground-glass pozzolan has recently been considered a supplementary cementitious material by Canadian (CSA A3000) and American (ASTM C1866/C1866M) standards, but limited studies have been done on ground-glass use on-site. So, in this study, several sidewalk projects were performed by the SAQ Industrial Chair at the University of Sherbrooke from 2014 to 2017 on fields with different proportions of ground glass (that is, 10, 15, and 20%) in different conditions considered in such a cold climatic region. Sidewalks are a nonstructural plain concrete element that are among the most exposed to chloride and freezing and thawing in saturated conditions of municipal infrastructures. Coring campaigns were carried out on these concretes after several years of exposure (between 5 and 8 years). The results of core samples extracted from the sites were compared to the laboratory-cured samples taken during the casting. These laboratory concrete mixtures were tested for fresh, hardened (compressive strength), and durability (freezing and thawing, scaling resistance, chloride-ion penetrability, electrical resistivity, and drying shrinkage) properties (up to 1 year). The results show that ground-glass concrete performs very well at all cement replacements in all manners in terms of long-term performance. Besides that, using ground-glass pozzolan in field projects also decreases the carbon footprint and environmental and glass disposal problems.

DOI:

10.14359/51740781


Document: 

23-101

Date: 

May 1, 2024

Author(s):

Le Teng, Alfred Addai-Nimoh, and Kamal H. Khayat

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

This study evaluates the potential to use shrinkage-reducing admixture (SRA) and pre-saturated lightweight sand (LWS) to shorten the external moist-curing requirement of ultra-high-performance concrete (UHPC), which is critical in some applications where continuous moist-curing is challenging. Key characteristics of UHPC prepared with and without SRA and LWS and under 3 days, 7 days, and continuous moist curing were investigated. Results indicate that the combined incorporation of 1% SRA and 17% LWS can shorten the required moist-curing duration because such a mixture under 3 days of moist curing exhibited low total shrinkage of 360 με and compressive strength of 135 MPa (19,580 psi) at 56 days, and flexural strength of 18 MPa (2610 psi) at 28 days. This mixture subjected to 3 days of moist curing had a similar hydration degree and 25% lower capillary porosity in paste compared to the Reference UHPC prepared without any SRA and LWS and under continuous moist curing. The incorporation of 17% LWS promoted cement hydration and silica fume pozzolanic reaction to a degree similar to extending the moist-curing duration from 3 to 28 days and offsetting the impact of SRA on reducing cement hydration. The lower capillary porosity in the paste compensated for the porosity induced by porous LWS to secure an acceptable level of total porosity of UHPC.

DOI:

10.14359/51740566


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer