ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 154 Abstracts search results

Document: 

23-288

Date: 

August 1, 2024

Author(s):

Deep Tripathi, Richard Morin, Mohamed Lamine Kateb, and Arezki Tagnit-Hamou

Publication:

Materials Journal

Volume:

121

Issue:

4

Abstract:

Ground-glass pozzolan has recently been considered a supplementary cementitious material by Canadian (CSA A3000) and American (ASTM C1866/C1866M) standards, but limited studies have been done on ground-glass use on-site. So, in this study, several sidewalk projects were performed by the SAQ Industrial Chair at the University of Sherbrooke from 2014 to 2017 on fields with different proportions of ground glass (that is, 10, 15, and 20%) in different conditions considered in such a cold climatic region. Sidewalks are a nonstructural plain concrete element that are among the most exposed to chloride and freezing and thawing in saturated conditions of municipal infrastructures. Coring campaigns were carried out on these concretes after several years of exposure (between 5 and 8 years). The results of core samples extracted from the sites were compared to the laboratory-cured samples taken during the casting. These laboratory concrete mixtures were tested for fresh, hardened (compressive strength), and durability (freezing and thawing, scaling resistance, chloride-ion penetrability, electrical resistivity, and drying shrinkage) properties (up to 1 year). The results show that ground-glass concrete performs very well at all cement replacements in all manners in terms of long-term performance. Besides that, using ground-glass pozzolan in field projects also decreases the carbon footprint and environmental and glass disposal problems.

DOI:

10.14359/51740781


Document: 

23-191

Date: 

May 1, 2024

Author(s):

P. Mohsenzadeh Tochahi, G. Asadollahfardi, S. F. Saghravani, and N. Mohammadzadeh

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

In marine structures, concrete requires adequate resistance against chloride-ion penetration. As a result, numerous studies have been conducted to enhance the mechanical properties and durability of concrete by incorporating various pozzolans. This research investigated the curing conditions of samples including zeolite and metakaolin mixed with micro-/nanobubble water in artificial seawater and standard conditions. The results indicated that incorporating zeolite and metakaolin mixed with micro-/nanobubble water, cured in artificial seawater conditions, compared to similar samples that were cured in standard conditions, improved the mechanical properties and durability of concrete samples. The 28-day compressive strength of the concrete samples containing 10% metakaolin mixed with 100% micro-/nanobubble water and 10% zeolite blended with 100% micro-/nanobubble water cured in seawater increased by 25.06% and 20.9%, respectively, compared to the control sample cured in standard conditions. The most significant results were obtained with a compound of 10% metakaolin and 10% zeolite with 100% micro-/nanobubble water cured in seawater (MK10Z10NB100CS), which significantly increased the compressive, tensile, and flexural strengths by 11.13, 14, and 9.1%, respectively, compared with the MK10Z10NB100 sample cured in standard conditions. Furthermore, it considerably decreased the 24-hour water absorption and chloride penetration at 90 days— by 27.70 and 82.89%, respectively—compared with the control sample cured in standard conditions.

DOI:

10.14359/51740567


Document: 

23-101

Date: 

May 1, 2024

Author(s):

Le Teng, Alfred Addai-Nimoh, and Kamal H. Khayat

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

This study evaluates the potential to use shrinkage-reducing admixture (SRA) and pre-saturated lightweight sand (LWS) to shorten the external moist-curing requirement of ultra-high-performance concrete (UHPC), which is critical in some applications where continuous moist-curing is challenging. Key characteristics of UHPC prepared with and without SRA and LWS and under 3 days, 7 days, and continuous moist curing were investigated. Results indicate that the combined incorporation of 1% SRA and 17% LWS can shorten the required moist-curing duration because such a mixture under 3 days of moist curing exhibited low total shrinkage of 360 με and compressive strength of 135 MPa (19,580 psi) at 56 days, and flexural strength of 18 MPa (2610 psi) at 28 days. This mixture subjected to 3 days of moist curing had a similar hydration degree and 25% lower capillary porosity in paste compared to the Reference UHPC prepared without any SRA and LWS and under continuous moist curing. The incorporation of 17% LWS promoted cement hydration and silica fume pozzolanic reaction to a degree similar to extending the moist-curing duration from 3 to 28 days and offsetting the impact of SRA on reducing cement hydration. The lower capillary porosity in the paste compensated for the porosity induced by porous LWS to secure an acceptable level of total porosity of UHPC.

DOI:

10.14359/51740566


Document: 

22-277

Date: 

July 1, 2023

Author(s):

Keshav Bharadwaj, O. Burkan Isgor, and W. Jason Weiss

Publication:

Materials Journal

Volume:

120

Issue:

4

Abstract:

As the number of potential supplementary cementitious materials (SCMs) increase, there is a need to determine their reactivity. Most recent methods to assess pozzolanic reactivity are based on measuring certain outputs such as heat release (Q), calcium hydroxide (CH) consumption, and nonevaporable water. This paper uses thermodynamic modeling to aid in the interpretation of these tests and the quantification of reactivity. It is shown that pozzolanic reactivity should be interpreted based on the SCM type. The presence of sulfates and carbonates during reactivity quantification alter the reaction of the Al2O3 phases, making the interpretation of the reactivity test results challenging. The reactivity of commercial SCMs should be interpreted specific to the type of SCM as described by ASTM International/AASHTO. A proposed interpretation for commercial SCMs is provided in this paper.

DOI:

10.14359/51738817


Document: 

22-163

Date: 

May 1, 2023

Author(s):

Rimvydas Kaminskas, Irmantas Barauskas, and Edvinas Kazlauskas

Publication:

Materials Journal

Volume:

120

Issue:

3

Abstract:

The main objective of this study was to investigate the possibility of using a mixture of two different wastes—spent catalyst from the oil cracking process and spent smectite clay from the alimentary oil bleaching process—as supplementary cementitious materials (SCMs). The spent catalyst was used as received, and the smectite clay waste was further thermally activated at 600°C. Both wastes were found to contain amorphous compounds and to have good pozzolanic activity. Fifteen wt. % of portland cement was replaced by these wastes mixed in different proportions. It was found that the additives from a mixture of these wastes accelerated the early hydration of the cement in a complex manner. The smectite clay component promotes the hydration reactions of calcium silicates, while the catalyst component activates the reaction of the aluminate-bearing phase. A similar complex trend was found for the compressive strength of the samples: the higher compressive strength of the cement samples produced the catalyst component at shorter periods of hydration, but as the duration of hydration increased to 28 days, a smectite clay component began to impart greater compressive strength. The mixture of 70 wt. % spent catalyst and 30 wt.% smectite clay waste was found to have the best strength properties, and up to 20 wt. % portland cement could be replaced using these admixtures.

DOI:

10.14359/51738684


12345...>>

Results Per Page