ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 39 Abstracts search results

Document: 

24-011

Date: 

July 10, 2024

Author(s):

Hyeonki Hong, Amreen Fatima, Anol Mukhopadhyay, Mary Beth D. Hueste, John Mander, Stefan Hurlebaus

Publication:

Materials Journal

Abstract:

Although ultra-high-performance concrete (UHPC) is one of the promising materials for precast bridge girder applications due to its advanced properties and durability, its implementation in the precast industry is subject to several potential concerns. To support implementation, this paper presents the development of nonproprietary UHPC mixtures for precast, pretensioned UHPC bridge girder applications. The nonproprietary UHPC mixtures were developed using materials commonly available in the Texas precast industry with the additional requirement of obtaining a compressive strength of 12-14 ksi (83–97 MPa) within 24 hours without any heat treatment while maintaining current precast, pretensioned bridge girder fabrication practices. The fresh, hardened, and durability properties of both lab- and plant-made UHPC mixtures were investigated. The research results show that selected nonproprietary UHPC mixture developed in a lab setting can be successfully produced in a precast plant setting with comparable properties.

DOI:

10.14359/51742043


Document: 

22-424

Date: 

April 1, 2024

Author(s):

C. Pleesudjai, D. Patel, K. A. Williams Gaona, M. Bakhshi, V. Nasri, and B. Mobasher

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Statistical process control (SPC) procedures are proposed to improve the production efficiency of precast concrete tunnel segments. Quality control test results of more than 1000 ASTM C1609/C1609M beam specimens were analyzed. These specimens were collected over 18 months from the fiber-reinforced concrete (FRC) used for the production of precast tunnel segments of a major wastewater tunnel project in the Northeast United States. The Anderson-Darling (AD) test for the overall distribution indicated that the data are best described by a normal distribution. The initial residual strength parameter for the FRC mixture, f D 600, is the most representative parameter of the post-crack region. The lower 95% confidence interval (CI) values for 28-day flexural strength parameters of f1, f D 600, and f D 300 exceeded the design strengths and hence validated the strength acceptability criteria set at 3.7 MPa (540 psi). A combination of run chart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) control charts successfully identified the out-of-control mean values of flexural strengths. These methods identify the periods corresponding to incapable manufacturing processes that should be investigated to move the processes back into control. This approach successfully identified the capable or incapable processes. The study also included the Bootstrap Method to analyze standard error in the test data and its reliability to determine the sample size.

DOI:

10.14359/51740373


Document: 

22-136

Date: 

May 1, 2023

Author(s):

D. F. Marbaniang, A. Kar, D. Adak, K. K. Ramagiri, D. Srinivas, and I. Ray

Publication:

Materials Journal

Volume:

120

Issue:

3

Abstract:

Thermal-cured alkali-activated binders (AABs) are a potential replacement for traditional portland cement (PC) in concrete, primarily for precast applications. To avoid this energy-intensive regime and encourage wider application, this study investigates the development of ambient-cured AABs by adding graphene oxide (GO) nanoparticles. The mechanical strength and durability characteristics are determined for alkali-activated slag (AAS) mortar specimens prepared using 4, 6, and 8 molar (4, 6, and 8 M) concentrations of sodium hydroxide in the alkaline activator. The different percentages of GO by weight of slag are 0.0, 0.03, 0.06, and 0.09%. The mechanical parameters considered are compressive, flexural, and splitting tensile strengths. The durability parameters investigated are the rapid chloride permeability test (RCPT), sorptivity, and acid resistance. The performance of ambient-cured AAS mortar specimens containing GO is compared with thermalcured AAS mortar specimens (without any GO inclusions) and the control cement mortar (PC) to evaluate the effect of GO on the mortar characteristics. The strength of AAS mortar is observed to be higher both with and without GO inclusions for the molarity of sodium hydroxide greater than 4 M. The mixture containing 0.06% GO with a 4 M activator is found to exhibit optimal mechanical and durability characteristics. Mineralogical, chemical, and microstructural investigations confirm that the addition of GO to the ambient-cured AAS accelerates the rate of hydration, even at a lower concentration of the activator (4 M) due to its high specific surface area and consequent formation of a greater number of nucleation sites. Hence, ambient-cured AAS mortar prepared using 4 M sodium hydroxide and 0.06% GO is recommended for practical use.

DOI:

10.14359/51738708


Document: 

22-226

Date: 

May 1, 2023

Author(s):

Savitha Sagari Srinivasan and Raissa Douglas Ferron

Publication:

Materials Journal

Volume:

120

Issue:

3

Abstract:

Most concrete service life models are designed for uncrackedconditions, and the effect of microcracks on such models has not been as well researched. A service life model for concrete structures that takes into account microcracking is presented. A unique feature of this model is that its input parameters can be determined using only nondestructive methods, thus allowing it to be used when samples for laboratory tests cannot be extracted— for example, in in-service or critical infrastructure. The model was developed for low water-cementitious materials ratio (w/cm) concrete mixtures and validated on full-scale prestressed concrete girders. The results showed that the presence of a large number of microcracks could cause a loss in the remaining service life of concrete structures, even if individual microcracks did not cause asignificant impact.

DOI:

10.14359/51738686


Document: 

21-466

Date: 

January 1, 2023

Author(s):

Xiaoguang Chen, Zeger Sierens, Elke Gruyaert, and Jiabin Li

Publication:

Materials Journal

Volume:

120

Issue:

1

Abstract:

Mixed recycled aggregate (MRA) is considered a sustainable construction material, and its use in precast concrete is currently banned due to its poor engineering performance. This paper aims to evaluate the feasibility of partial replacement of natural coarse aggregate with MRA in self-consolidating concrete (SCC) for manufacturing architectural precast concrete sandwich wall panels. To this end, five MRAs from recycling plants were characterized, out of which two were selected to develop SCC. SCC mixtures with three replacement levels and three water compensation degrees were produced, and their physical, mechanical, durability, and aesthetic properties were examined. The results showed that the incorporation of MRA dominated the mechanical properties of SCC, while the water compensation degree primarily affected the flowability and carbonation resistance. The presence of MRA had no considerable effect on the aesthetic characteristics. Up to 10% MRA in weight of total aggregates could be used in precast SCC.

DOI:

10.14359/51737333


12345...>>

Results Per Page