International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 78 Abstracts search results

Document: 

24-360

Date: 

November 13, 2025

Author(s):

Aditi Chauhan, Yogesh M. Desai, Sauvik Banerjee and Umesh Kumar Sharma

Publication:

Materials Journal

Abstract:

Analysis of reinforced-concrete damage (RC) under nonuniform corrosion has mostly been performed by adopting the two-dimensional (2-D) plane strain assumption to reduce the computational efforts compared with three-dimensional (3-D) models. This paper aims to compare results obtained from the 2-D plane strain formulation with 3-D analysis in the context of nonuniform corrosion, highlighting differences and similarities to gain valuable insights into the structural response and damage prediction. The findings indicate that both the 2-D and 3-D models yield reasonably similar damage patterns with minor discrepancies in crack orientation and predict comparable hairline crack widths on the concrete surface. During initial corrosion stages, both models exhibit similar stress and strain distributions. However, as corrosion progresses, distinct variations in stress and strain patterns emerge. Interestingly, despite these differences, the extent of damage converges as corrosion advances, suggesting a critical stage beyond which the RC response remains consistent regardless of the modeling approach. The study emphasizes stress and strain variations over time for accurate RC behavior representation.

DOI:

10.14359/51749322


Document: 

24-453

Date: 

November 13, 2025

Author(s):

Mohamed Saeed Mohamed, Mohamed El-Sayed Sultan, Ahmed Galal Ibrahim, Farag Ahmed Abd El-Hai

Publication:

Materials Journal

Abstract:

In this work, novel polycarboxylate admixtures were synthesized by two different free radical polymerization systems of methacrylic acid (MAA) and methoxy polyethylene glycol methacrylate (MPEG-MA) for PC-1, and acrylic acid (AA) and iso amyl alcohol polyethylene glycol (IAA-PEG) for PC-2. Thioglycolic acid as a chain transfer agent and ammonium persulphate as an initiator were used. The synthesized carboxylic polymers were characterized using FTIR, H-NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The influence of the chemical structure of polycarboxylates on the rheology of the concrete, as well as the prognosis of the superplasticizer’s development, is also presented through measuring water consistency, setting times, flow table, slump test, Zeta potential, and compressive strength. The cementitious products were investigated with X-ray diffraction (XRD) and scanning electron microscope (SEM). The developed superplasticizers have shown good dispersion effects and slump performance in workability and fluidity retention tests, adsorption performance, and scanning electron microscopy performance. Intriguingly, the PC-1 and PC-2 mixes achieved flow table values of 230 and 200 mm, respectively. The compressive strength values at various curing ages up to 28 days exhibited double and triple values compared with the control sample. Additionally, compared to the control ordinary Portland cement paste, a reduction of water-to-cement ratio of about 0.25 and the development of excessive hydration products give PC-1 and PC-2 extensive pastes a more dense and compact structure in XRD and SEM investigation.

DOI:

10.14359/51749323


Document: 

23-224

Date: 

November 13, 2025

Author(s):

Feyza Nur Sahan, Ali Riza Erbektas, W. Jason Weiss, O. Burkan Isgor

Publication:

Materials Journal

Abstract:

Service life modeling of microbially induced concrete corrosion (MICC) is essential for assessing structural durability, optimizing maintenance, and minimizing risks in wastewater environments. ASTM C1904-20 is a recently developed biogenic benchtop method for assessing MICC that is safe, accelerated, and practical compared to conventional laboratory tests. The objective of this study is to use the benchtop test to predict the service life of concrete exposed to MICC in sewer pipes. This correlation is based on the Pomeroy model that relates the field H2S concentrations, wastewater flow conditions, pipe and flow geometry, and the properties of the concrete. A demonstration study is provided to show how the ASTM C1904 data could be used to predict the performance of different types of concrete and antimicrobial products in realistic exposure scenarios. The projected corrosion rates in field conditions reflected the delayed and reduced corrosion rates for mixtures with antimicrobial treatment.

DOI:

10.14359/51749321


Document: 

25-037

Date: 

November 12, 2025

Author(s):

Anila C Shaju, Praveen Nagarajan, Sudhakumar J, and Blessen S. Thomas

Publication:

Materials Journal

Abstract:

The growing generation of construction and demolition waste necessitates the development of effective recycling strategies to address environmental concerns. This study investigated the replacement of natural fine aggregate (NFA) with recycled fine aggregate (RFA) at 0, 50, and 100% using two treatment methods: (i) sodium silicate (SS)–silica fume (SF) pre-soaking treatment (SS-T) and (ii) organic treatment (OA-T) with bio-additives derived from Persea macranta, Haritaki, and Ciccus glauca roxb. A quantitative comparison of the aggregate and mortar quality was conducted for each method. The combined application of SST and OT demonstrated an 85% improvement in workability and a 68% reduction in water absorption for RFA. Mortar experiments revealed up to 76% improvement in compressive and flexural strengths compared with untreated RFA mortar. Microstructural analyses (SEM, EDS, XRD, and FT-IR) confirmed the enhanced bond strength and mineral composition. This study highlights the potential of SST and OT to produce durable, high-performance RFA mortars using locally available, economical bio-additives.

DOI:

10.14359/51749324


Document: 

24-240

Date: 

November 12, 2025

Author(s):

Amir Iranmanesh, Mahsa Panahi, and Farhad Ansari

Publication:

Structural Journal

Abstract:

Integrating real-time sensor data with physics-based models enhances the accuracy and efficiency of structural simulation and prognosis. In this study, a sensing-based simulation method is introduced to compute bending moments in reinforced concrete bridge columns subjected to seismic motions, based on the measured strains continuously fed to plasticity models. The experimental program included hybrid testing of scaled reinforced concrete bridges under consecutive seismic events. The experimental columns were instrumented with embedded as well as surface-adhered fiber-optic Bragg grating (FBG) sensors for real-time monitoring of strains reflecting degradation of the columns during the formation of damage. The fundamental assumption of strain compatibility in reinforced concrete members was investigated for the successive progression of damage in the cross sections of the columns. The stress distributions within the concrete core and cover were computed through the confined and unconfined concrete stress-strain relations for loading, unloading, and reloading scenarios. The bending moments in the cross-section were computed and compared with the corresponding experimental values calculated based on direct measurements of forces. The results from this study revealed that the cross-sectional strains exhibit three primary features during the seismic events that need to be considered for the accurate calculation of bending moments. Computation of the bending moments requires considering the shifts in cyclic reference, post-event residual strains, and the real steel strains. By using these features, the computed bending moments during the column tests mimicked the experimental results based on the measured seismic forces on the columns.

DOI:

10.14359/51749316


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer