ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 60 Abstracts search results
Document:
24-418
Date:
September 11, 2025
Author(s):
Matthew Soltani and Christopher Weilbaker
Publication:
Structural Journal
Abstract:
This study presents a comprehensive review of eco-friendly materials and advanced repair techniques for rehabilitating reinforced-concrete (RC) structures, emphasizing their role in promoting sustainability and enhancing performance. By evaluating fifty-five research programs conducted between 2001 and 2024, the study focuses on emerging materials such as geopolymers, natural fibers, and fiber-reinforced composites, highlighting their mechanical properties, environmental benefits, and potential for integration into traditional RC systems. The review is thematically organized into four areas: (1) Sustainability and Environmental Impacts, (2) Material Innovation and Properties, (3) Repair Techniques and Efficiency, and (4) Structural Performance. Key findings reveal that these materials not only reduce the carbon footprint of construction but also significantly improve structural durability, corrosion resistance, and long-term performance under varying environmental conditions. Specifically, geopolymer concretes exhibit low CO₂ emissions and superior bond strength; bamboo and flax fibers offer strong tensile capacity with renewable sourcing; and MICP techniques deliver self-healing functionality that reduces dependency on chemical-based crack sealants. Additionally, the use of recycled and bio-based materials further contributes to cost-efficiency and environmental resilience, fostering circular economy principles. By synthesizing findings across these domains, this study provides practical insights into how eco-friendly materials can simultaneously address environmental, structural, and economic challenges in RC repair. The study underscores the importance of adopting innovative repair methods that incorporate these sustainable materials to address modern civil engineering challenges, balancing infrastructure longevity, sustainability, and reduced environmental impact.
DOI:
10.14359/51749170
24-435
Jorge L. Bazan and Victor I. Fernandez-Davila
This study investigates the ultimate flexural strength (UFS) of reinforced concrete beams strengthened with CFRP (RCB-SCFRP), focusing on the identification and quantification of flexural overstrength concerning the nominal flexural strength (NFS) as defined by ACI 440.2R. A total of 106 full-scale specimens tested were carefully selected from previous research, varying in concrete strength, reinforcement configurations, and CFRP materials from multiple manufacturers. Results show that ACI 440.2R provisions accurately and conservatively estimate the flexural capacity of CFRP-strengthened beams. Including CFRP transverse reinforcement (TR) resulted in a slight increase in UFS. The type of strengthening, whether preloaded and repaired or strengthened, had little effect on the UFS/NFS ratio. Steel reinforcement ratio (SRR) significantly influenced overstrength, with higher UFS/NFS ratios observed between 0.70% and 1.00% SRR. CFRP axial rigidity notably affected overstrength, with optimal performance between 0.10 and 0.50 GPa·mm. Deflection ductility was mainly affected by the rigidity of CFRP, with a 13% increase noted due to CFRP TR. A log-normal model was developed to estimate UFS for RCB-SCFRP beams based on experimental data and ACI 440.2R guidelines.
10.14359/51749171
24-442
Yail J. Kim and Ali Alatify
This paper presents an experimental study on the residual bond of glass fiber-reinforced polymer (GFRP) rebars embedded in ultra-high-performance concrete (UHPC) subjected to elevated temperatures, including a comparison with ordinary concrete. Based on the range of thermal loading from 25°C (77°F) to 300o°C (572o°F), material and push-out tests are conducted to examine the temperature-dependent properties of the constituents and the behavior of the interface. Also performed are chemical and radiometric analyses. The average specific heat and thermal conductivity of UHPC are 12.1% and 6.1% higher than those of ordinary concrete, respectively. The temperature-induced reduction of density in these mixtures ranges between 5.4% and 6.2% at 300o°C (572o°F). Thermal damage to GFRP, in the context of microcracking, is observed after exposure to 150°C (302°F). Fourier transform infrared spectroscopy reveals prominent wavenumbers at 668 cm-1 (263 in.-1) and 2,360 cm-1 (929 in.-1), related to the bond between the fibers and resin in the rebars, while spectroradiometry characterizes the thermal degradation of GFRP through diminished reflectivity in conjunction with the peak wavelength positions of 584 nm (2,299×10-8 in.) and 1,871 nm (7,366×10-8 in.). The linearly ascending bond-slip response of the interface alters after reaching the maximum shear stresses, leading to gradual and abrupt declines for the ordinary concrete and UHPC, respectively. The failure mode of the ordinary concrete interface is temperature-sensitive; however, spalling in the bonded region is consistently noticed in the UHPC interface. The fracture energy of the interface with UHPC exceeds that of the interface with the ordinary concrete beyond 150o°C (302o°F). Design recommendations are provided for estimating reductions in the residual bond of the GFRP system exposed to elevated temperatures.
10.14359/51749172
24-465
Jahanzaib and Shamim A. Sheikh
The paper presents a comparative study on the seismic behavior of circular columns reinforced with glass fiber-reinforced polymer (GFRP) and steel. The study specifically investigates the influence of replacing steel bars with GFRP bars on columns’ seismic response. All the studies summarized in this article were conducted at the University of Toronto. Results from the tests of 24 columns (all having 356 mm diameter and tested in a similar manner) from three different studies are closely analyzed to compare their responses. Based on the experimental results, it is found that replacing steel spirals with GFRP spirals did not result in substantial variation in the seismic performance of columns. Both types demonstrated similar ductility parameters and drift ratios when similar amounts of spirals were used at comparable pitches. Likewise, columns with steel longitudinal reinforcement and GFRP longitudinal reinforcement achieved similar displacement ductility, energy dissipation, and drift ratio.
10.14359/51749173
25-040
Charles Kerby and Santiago Pujol
The deformability of reinforced concrete walls with staggered lap splices was studied through tests of six cantilevered walls under constant axial load and cyclic reversals of lateral displacement. The height-to-length aspect ratios of the walls were approximately 3.2. Four walls had staggered laps, one wall had non-staggered laps, and one wall had mechanical couplers. Laps were detailed to yield the spliced reinforcement. Test walls with staggered laps lost lateral-load resistance at smaller drift ratios (1.0% to 2.1%) than both the test wall with non-staggered laps (2.3%) and the test wall with mechanical couplers (3.5%). Staggered lap splices resulted in larger strain concentrations than non-staggered lap splices. It was concluded that both staggered and non-staggered lap splices a) can have reduced strain capacity relative to continuous bars (leading to bond failure before or after yield) and b) alter inelastic strain distributions, causing large reductions in effective plastic hinge length.
10.14359/51749175
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer