ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 133 Abstracts search results
Document:
25-134
Date:
December 11, 2025
Author(s):
Sahil Bansal
Publication:
Materials Journal
Abstract:
Advances in concrete material science have led to the development of a new class of cementitious materials, namely ultra-high-performance concrete (UHPC), which offers superior mechanical and durability properties. The control and characterization of the fresh properties of UHPC are crucial for successful mixture design. Among the methods for evaluating these properties, the mini-cone test has gained prominence due to its practicality. It requires smaller sample volumes than the standard slump cone test, making it especially suited for laboratory assessments of UHPC mixtures. In contrast, the slump flow test is the simplest and most widely used test for both laboratory and field testing of concrete. This study aims to establish a correlation between mini-cone flow and standard slump flow test results. A linear relationship is identified, which forms the basis for proposing consistency classes for UHPC using mini-cone flow values. These proposed classes align with the established consistency classifications for self-compacting concrete.
DOI:
10.14359/51749383
24-476
December 8, 2025
Giwan Noh, Seung Heon Lee, and Thomas H.-K. Kang
Structural Journal
Ultra-high performance concrete (UHPC) is a forward-looking material ideal for use in large-scale civil infrastructure systems. However, due to its unique mix, when UHPC is used in actual structures in conjunction with materials like steel reinforcement, it may lead to unexpected behavior. Therefore, this study analyzed the behavior of reinforced UHPC (R-UHPC) for use in actual structures, focusing specifically on beams among various structural components, with a particular emphasis on their flexural behavior. For this purpose, the study collected and comprehensively analyzed experimental data from flexural tests of R-UHPC beams conducted to date, identifying basic mechanics, peculiarities, and considerations in structural design. This study highlights that, besides the commonly known longitudinal reinforcement ratio, numerous factors such as beam length, height, number of tension reinforcement layers, strength, etc., can influence the flexural behavior of R-UHPC beams and demonstrate how these elements impact the performance.
10.14359/51749375
24-395
November 12, 2025
Yail J. Kim and Ali Alatify
This paper presents the interface shear between ordinary concrete and ultra-high-performance concrete (UHPC) connected with glass fiber-reinforced polymer (GFRP) reinforcing bars. Following ancillary tests on reinforcing bar fracture under in-plane shear loading, concrete-reinforcing bar assemblies are loaded to examine capacities and failure modes as influenced by the size, spacing, and number of the reinforcing bars. While the shear behavior of bare reinforcing bars is primarily governed by the orientation of the load-resisting axes in the glass fibers and their volume, the size and spacing of the reinforcement largely control the interface capacity by affecting the load-transfer mechanism from the reinforcing bar to the concrete. The degree of stress distribution affects the load-displacement response of the interface, which is characterized in terms of quasi-steady, kinetic, and failure regions. The primary failure modes of the interface comprise rebar rupture and concrete splitting. The formation of cracks between the ordinary concrete and UHPC results from interfacial deformations, leading to spalling damage when applied loads exceed service levels. An analytical model is formulated alongside an optimization technique. The capacities of the interface in relation to the reinforcing bar rupture and concrete splitting failure modes are predicted. Furthermore, a machine learning algorithm is used to define a failure envelope and propose practice guidelines through parametric investigations.
10.14359/51749317
25-086
November 6, 2025
Abdulrahman Salah and Dimitrios Kalliontzis
This paper presents a design model for the one-way shear of ultra-high-performance concrete (UHPC) beams without transverse reinforcement. The model unifies the shear design of UHPC with the ACI 318 shear design approach for conventional concrete. Hence, the proposed model accounts for the longitudinal reinforcement ratio, the axial load effects, while the tensile strength of UHPC replaces the concrete compressive strength term. The effects of fiber type, fiber alignment, beam shape, and beam size are incorporated through dimensionless parameters, with their values calibrated using UHPC beam and panel shear datasets. The proposed shear model was evaluated using a database of 137 UHPC non-prestressed and prestressed rectangular and I-shape beam shear tests performed in the United States and elsewhere.
10.14359/51749307
25-107
October 8, 2025
Avinaya Tripathi, Sahil Surehali, Atharwa Samir Nimbalkar, Barzin Mobasher, Narayanan Neithalath
Ultra-high-performance concrete (UHPC) is composed of a high volume fraction of binder and steel fibers, and a very low water content, resulting in enhanced strength and ductility, along with higher cost and environmental impacts. This study develops a UHPC mixture amenable to three-dimensional (3-D) printing, with 30% of cement (by mass) replaced with a combination of replacement materials. The proportioned UHPC mixture with 1.5% fiber volume fraction demonstrates 28-day compressive strengths of > 120 MPa (17.4 kips), and limited anisotropy when tested in the three orthogonal directions. Furthermore, 3-D printed layered composites are developed where UHPC (with and without fiber reinforcement) and conventional concrete layers are synergistically used in appropriate locations of the beam so as to achieve mechanical performance that is comparable to 3-D printed UHPC sections. Such manufacturing flexibility offered by 3-D printing allows conserving resources and attaining desirable economic and environmental outcomes, as is shown using life cycle and techno-economic analyses (LCA/TEA). Experimental and theoretical analysis of load carrying capacity and preliminary LCA/TEA show that >50% of the fiber-reinforced UHPC beam volume (in the compression zone) can be replaced with conventional concrete, resulting in only a <20% reduction in peak load carrying capacity, but >35% reduction in cost and >20% reduction in CO2 emissions. These findings show that targeted layering of different materials through 3-D printing enables the development and construction of 3-D-printed performance-equivalent structural members with lower cost and environmental impacts.
10.14359/51749253
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer