Noncorrosive fiber-reinforced polymer (FRP) reinforcement presents an attractive alternative to conventional steel reinforcement, which is prone to corrosion, especially in harsh environments exposed to deicing salt or seawater. However, FRP rebars’ lower axial stiffness leads to greater crack widths when FRP reinforcing bars elongate, resulting in significantly lower flexural stiffness for FRP-reinforcing bar-reinforced concrete members. The deeper cracks and larger crack widths also reduce the depth of the compression zone. Consequently, both the aggregate interlock and the compression zone for shear resistance are significantly reduced. Additionally, due to their limited tensile ductility, FRP reinforcing bars can rupture before the concrete crushes, potentially resulting in sudden and catastrophic member failure. Therefore, ACI Committee 440 states that through a compression-controlled design, FRP-reinforcing bar-reinforced concrete members can be intentionally designed to fail by allowing the concrete to crush before the FRP reinforcing bars rupture. However, this design approach does not yield an equivalent ductile behavior when compared to steel-reinforcing bar-reinforced concrete members, resulting in a lower strength reduction, ϕ, value of 0.65. In this regard, using FRP-reinforcing bar-reinforced ultra-high-performance concrete (UHPC) members offers a novel solution, providing high strength, stiffness, ductility, and corrosion-resistant characteristics. UHPC has a very low water-to-cementitious materials ratio (0.18 to 0.25), which results in dense particle packing. This very dense microstructure and low water ratio not only improves compressive strength but also delays liquid ingress. UHPC can be tailored to achieve exceptional compressive ductility, with a maximum usable compressive strain greater than 0.015. Unlike conventional designs where ductility is provided by steel reinforcing bars, UHPC can be used to achieve the required ductility for a flexural member, allowing FRP reinforcing bars to be designed to stay elastic. The high member ductility also justifies the use of a higher strength reduction factor, ϕ, of 0.9. This research, validated through large-scale experiments, explores this design concept by leveraging UHPC’s high compressive ductility, cracking resistance, and shear strength, along with a high quantity of noncorrosive FRP reinforcing bars. The increased amount of longitudinal reinforcement helps maintain the flexural stiffness (controlling deflection under service loads), bond strength, and shear strength of the members. Furthermore, the damage-resistant capability of UHPC and the elasticity of FRP reinforcing bars provide a structural member with a restoring force, leading to reduced residual deflection and enhanced resilience.
|