ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 129 Abstracts search results
Document:
25-107
Date:
October 8, 2025
Author(s):
Avinaya Tripathi, Sahil Surehali, Atharwa Samir Nimbalkar, Barzin Mobasher, Narayanan Neithalath
Publication:
Materials Journal
Abstract:
Ultra-high-performance concrete (UHPC) is composed of a high volume fraction of binder and steel fibers, and a very low water content, resulting in enhanced strength and ductility, along with higher cost and environmental impacts. This study develops a UHPC mixture amenable to three-dimensional (3-D) printing, with 30% of cement (by mass) replaced with a combination of replacement materials. The proportioned UHPC mixture with 1.5% fiber volume fraction demonstrates 28-day compressive strengths of > 120 MPa (17.4 kips), and limited anisotropy when tested in the three orthogonal directions. Furthermore, 3-D printed layered composites are developed where UHPC (with and without fiber reinforcement) and conventional concrete layers are synergistically used in appropriate locations of the beam so as to achieve mechanical performance that is comparable to 3-D printed UHPC sections. Such manufacturing flexibility offered by 3-D printing allows conserving resources and attaining desirable economic and environmental outcomes, as is shown using life cycle and techno-economic analyses (LCA/TEA). Experimental and theoretical analysis of load carrying capacity and preliminary LCA/TEA show that >50% of the fiber-reinforced UHPC beam volume (in the compression zone) can be replaced with conventional concrete, resulting in only a <20% reduction in peak load carrying capacity, but >35% reduction in cost and >20% reduction in CO2 emissions. These findings show that targeted layering of different materials through 3-D printing enables the development and construction of 3-D-printed performance-equivalent structural members with lower cost and environmental impacts.
DOI:
10.14359/51749253
24-442
September 11, 2025
Yail J. Kim and Ali Alatify
Structural Journal
This paper presents an experimental study on the residual bond of glass fiber-reinforced polymer (GFRP) rebars embedded in ultra-high-performance concrete (UHPC) subjected to elevated temperatures, including a comparison with ordinary concrete. Based on the range of thermal loading from 25°C (77°F) to 300o°C (572o°F), material and push-out tests are conducted to examine the temperature-dependent properties of the constituents and the behavior of the interface. Also performed are chemical and radiometric analyses. The average specific heat and thermal conductivity of UHPC are 12.1% and 6.1% higher than those of ordinary concrete, respectively. The temperature-induced reduction of density in these mixtures ranges between 5.4% and 6.2% at 300o°C (572o°F). Thermal damage to GFRP, in the context of microcracking, is observed after exposure to 150°C (302°F). Fourier transform infrared spectroscopy reveals prominent wavenumbers at 668 cm-1 (263 in.-1) and 2,360 cm-1 (929 in.-1), related to the bond between the fibers and resin in the rebars, while spectroradiometry characterizes the thermal degradation of GFRP through diminished reflectivity in conjunction with the peak wavelength positions of 584 nm (2,299×10-8 in.) and 1,871 nm (7,366×10-8 in.). The linearly ascending bond-slip response of the interface alters after reaching the maximum shear stresses, leading to gradual and abrupt declines for the ordinary concrete and UHPC, respectively. The failure mode of the ordinary concrete interface is temperature-sensitive; however, spalling in the bonded region is consistently noticed in the UHPC interface. The fracture energy of the interface with UHPC exceeds that of the interface with the ordinary concrete beyond 150o°C (302o°F). Design recommendations are provided for estimating reductions in the residual bond of the GFRP system exposed to elevated temperatures.
10.14359/51749172
25-045
Srishti Banerji, Venkatesh Kodur, and Augusto Gil
Ultra-high-performance concrete (UHPC) is increasingly gaining attention for structural applications, with structural fire safety being a key design factor. It is evident from recent research that UHPC structural members are prone to fire-induced spalling and have lower fire resistance than traditional concrete members. Currently, there are no specific guidelines for the fire design of UHPC members, and extending existing fire design provisions developed for conventional concrete members may not be appropriate, considering the unique challenges posed by UHPC. This paper outlines the critical factors contributing to the lower fire performance of UHPC structural members, discussing these factors in detail, using data from both numerical and experimental studies. Based on the results from parametric studies, as well as observations from published data, a set of design guidelines for mitigating spalling and enhancing the fire resistance of UHPC beams is proposed.
10.14359/51749176
24-346
September 1, 2025
Kamran Aghaee and Kamal H. Khayat
Volume:
122
Issue:
5
Ultra-high-performance geopolymer concrete (UHP-GPC) can exhibit high to exceptional strength. Given the importance of UHP-GPC’s mechanical properties, prediction of its 28-day compressive strength (fc′) remains insufficiently explored. This study predicts UHP-GPC’s fc′ based on alkali-activated materials, sand, fiber volume, and water-geopolymer binder and alkali activator ratios. Advanced statistical modeling and a spectrum of ensemble machine learning (ML) algorithms including random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), and stacking are used to predict UHP-GPC’s strength. The derived models reveal the significance of fiber, slag, and sand as the most significant factors influencing the 28-day fc′ of UHP-GPC. All the ML models demonstrate higher precision in forecasting fc′ of UHP-GPC compared to statistical modeling, with R2 peaking at 0.85. Equations are derived to predict the strength of UHP-GPC. This paper reveals that UHP-GPC with superior mechanical properties can be designed for further sustainability.
10.14359/51747873
24-150
Sumedh Sharma, Sriram Aaleti, and Pinar Okumus
This study introduces a new anchorage strategy using ultra-high-performance concrete (UHPC) to attach unbonded post- tensioning (PT) strands to existing foundations. This solution complements a seismic retrofit scheme investigated by the authors, which transforms nonductile cast-in-place reinforced concrete (RC) shear walls into unbonded PT rocking shear walls following concepts of selective weakening and self-centering. In the proposed PT anchorage scheme, mild steel reinforcements are inserted through the shear wall thickness and into the foundation. Subsequently, UHPC is cast around the wall base, forming a vertical extension connected to the foundation, which is used to anchor the unbonded PT strands. The feasibility and performance of the anchorage scheme was investigated through a combination of laboratory testing and numerical simulations. Pullout testing on four scaled-down anchorage specimens was conducted in the laboratory. Hairline cracks were observed in the UHPC during testing. Additionally, three-dimensional (3-D) finite element (FE) models were created, validated, and used to study the performance of the proposed anchorage scheme under lateral loading. The simulation results support the effectiveness of the proposed anchorage strategy.
10.14359/51746817
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer