International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 128 Abstracts search results

Document: 

24-442

Date: 

September 11, 2025

Author(s):

Yail J. Kim and Ali Alatify

Publication:

Structural Journal

Abstract:

This paper presents an experimental study on the residual bond of glass fiber-reinforced polymer (GFRP) rebars embedded in ultra-high-performance concrete (UHPC) subjected to elevated temperatures, including a comparison with ordinary concrete. Based on the range of thermal loading from 25°C (77°F) to 300o°C (572o°F), material and push-out tests are conducted to examine the temperature-dependent properties of the constituents and the behavior of the interface. Also performed are chemical and radiometric analyses. The average specific heat and thermal conductivity of UHPC are 12.1% and 6.1% higher than those of ordinary concrete, respectively. The temperature-induced reduction of density in these mixtures ranges between 5.4% and 6.2% at 300o°C (572o°F). Thermal damage to GFRP, in the context of microcracking, is observed after exposure to 150°C (302°F). Fourier transform infrared spectroscopy reveals prominent wavenumbers at 668 cm-1 (263 in.-1) and 2,360 cm-1 (929 in.-1), related to the bond between the fibers and resin in the rebars, while spectroradiometry characterizes the thermal degradation of GFRP through diminished reflectivity in conjunction with the peak wavelength positions of 584 nm (2,299×10-8 in.) and 1,871 nm (7,366×10-8 in.). The linearly ascending bond-slip response of the interface alters after reaching the maximum shear stresses, leading to gradual and abrupt declines for the ordinary concrete and UHPC, respectively. The failure mode of the ordinary concrete interface is temperature-sensitive; however, spalling in the bonded region is consistently noticed in the UHPC interface. The fracture energy of the interface with UHPC exceeds that of the interface with the ordinary concrete beyond 150o°C (302o°F). Design recommendations are provided for estimating reductions in the residual bond of the GFRP system exposed to elevated temperatures.

DOI:

10.14359/51749172


Document: 

25-045

Date: 

September 11, 2025

Author(s):

Srishti Banerji, Venkatesh Kodur, and Augusto Gil

Publication:

Structural Journal

Abstract:

Ultra-high-performance concrete (UHPC) is increasingly gaining attention for structural applications, with structural fire safety being a key design factor. It is evident from recent research that UHPC structural members are prone to fire-induced spalling and have lower fire resistance than traditional concrete members. Currently, there are no specific guidelines for the fire design of UHPC members, and extending existing fire design provisions developed for conventional concrete members may not be appropriate, considering the unique challenges posed by UHPC. This paper outlines the critical factors contributing to the lower fire performance of UHPC structural members, discussing these factors in detail, using data from both numerical and experimental studies. Based on the results from parametric studies, as well as observations from published data, a set of design guidelines for mitigating spalling and enhancing the fire resistance of UHPC beams is proposed.

DOI:

10.14359/51749176


Document: 

24-150

Date: 

September 1, 2025

Author(s):

Sumedh Sharma, Sriram Aaleti, and Pinar Okumus

Publication:

Structural Journal

Volume:

122

Issue:

5

Abstract:

This study introduces a new anchorage strategy using ultra-high-performance concrete (UHPC) to attach unbonded post- tensioning (PT) strands to existing foundations. This solution complements a seismic retrofit scheme investigated by the authors, which transforms nonductile cast-in-place reinforced concrete (RC) shear walls into unbonded PT rocking shear walls following concepts of selective weakening and self-centering. In the proposed PT anchorage scheme, mild steel reinforcements are inserted through the shear wall thickness and into the foundation. Subsequently, UHPC is cast around the wall base, forming a vertical extension connected to the foundation, which is used to anchor the unbonded PT strands. The feasibility and performance of the anchorage scheme was investigated through a combination of laboratory testing and numerical simulations. Pullout testing on four scaled-down anchorage specimens was conducted in the laboratory. Hairline cracks were observed in the UHPC during testing. Additionally, three-dimensional (3-D) finite element (FE) models were created, validated, and used to study the performance of the proposed anchorage scheme under lateral loading. The simulation results support the effectiveness of the proposed anchorage strategy.

DOI:

10.14359/51746817


Document: 

24-003

Date: 

July 1, 2025

Author(s):

Shih-Ho Chao and Venkatesh Babu Kaka

Publication:

Structural Journal

Volume:

122

Issue:

4

Abstract:

Noncorrosive fiber-reinforced polymer (FRP) reinforcement presents an attractive alternative to conventional steel reinforcement, which is prone to corrosion, especially in harsh environments exposed to deicing salt or seawater. However, FRP reinforcing bars’ lower axial stiffness leads to greater crack widths when FRP reinforcing bars elongate, resulting in significantly lower flexural stiffness for FRP bar-reinforced concrete members. The deeper cracks and larger crack widths also reduce the depth of the compression zone. Consequently, both the aggregate interlock and the compression zone for shear resistance are significantly reduced. Additionally, due to their limited tensile ductility, FRP reinforcing bars can rupture before the concrete crushes, potentially resulting in sudden and catastrophic member failure. Therefore, ACI Committee 440 states that through a compression-controlled design, FRP reinforced concrete members can be intentionally designed to fail by allowing the concrete to crush before the FRP reinforcing bars rupture. However, this design approach does not yield an equivalent ductile behavior when compared to steel-reinforced concrete members, resulting in a lower strength reduction, ϕ, value of 0.65. In this regard, using FRP-reinforced ultra-high-performance concrete (UHPC) members offer a novel solution, providing high strength, stiffness, ductility, and corrosion-resistant characteristics. UHPC has a very low water-cementitious materials ratio (0.18 to 0.25), which results in dense particle packing. This very dense microstructure and low water ratio not only improves compressive strength but delays liquid ingress. UHPC can be tailored to achieve exceptional compressive ductility, with a maximum usable compressive strain greater than 0.015. Unlike conventional designs where ductility is provided by steel reinforcing bars, UHPC can be used to achieve the required ductility for a flexural member, allowing FRP reinforcing bars to be designed to stay elastic. The high member ductility also justifies the use of a higher strength reduction factor, ϕ, of 0.9. This research, validated through large-scale experiments, explores this design concept by leveraging UHPC’s high compressive ductility, cracking resistance, and shear strength, along with a high quantity of noncorrosive FRP reinforcing bars. The increased amount of longitudinal reinforcement helps maintain the flexural stiffness (controlling deflection under service loads), bond strength, and shear strength of the members. Furthermore, the damage resistant capability of UHPC and the elasticity of FRP reinforcing bars provide a structural member with a restoring force, leading to reduced residual deflection and enhanced resilience.

DOI:

10.14359/51745468


Document: 

24-346

Date: 

June 11, 2025

Author(s):

Kamran Aghaee and Kamal H. Khayat

Publication:

Materials Journal

Abstract:

Ultra-high-performance geopolymer concrete (UHP-GPC) can exhibit high to exceptional strength. Given the importance of UHP-GPC’s mechanical properties, the prediction of its 28d compressive strength (f’c) remains insufficiently explored. This study predicts UHP-GPC’s f’c based on alkali-activated materials, sand, fiber volume, water-to-geopolymer binder, and alkali activator ratios. Advanced statistical modeling and a spectrum of ensemble machine learning (ML) algorithms, including random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), and stacking, are utilized to predict UHP-GPC’s strength. The derived models reveal the significance of fiber, slag, and sand as the most significant factors influencing the 28d f’c of UHP-GPC. All the ML models demonstrate higher precision in forecasting f’c of UHP-GPC compared to statistical modeling, with R2s peaking at 0.85. Equations are derived to predict the strength of UHP-GPC. This article reveals that UHP-GPC with superior mechanical properties can be designed for further sustainability.

DOI:

10.14359/51747873


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer