International Concrete Abstracts Portal

Showing 1-5 of 57 Abstracts search results

Document: 

SP362

Date: 

June 30, 2024

Author(s):

ACI, RILEM, Université de Sherbrooke, Université Toulouse III, CRIB, LMDC Toulouse

Publication:

Symposium Papers

Volume:

362

Abstract:

In July of 1983, the Canada Centre for Mineral and Energy Technology of Natural Resources Canada (CANMET), in association with the American Concrete Institute (ACI) and the U.S. Army Corps of Engineers, sponsored a 5-day international conference in Montebello, Quebec, Canada, on the use of fly ash, silica fume, slag, and other mineral by-products in concrete. The conference brought together representatives from industry, academia, and government agencies to present the latest information on these materials and to explore new areas of needed research. Since then, eight other such conferences have been held around the world (Madrid, Trondheim, Istanbul, Milwaukee, Bangkok, Madras, Las Vegas, and Warsaw). The 2007 Warsaw Conference was the last in this series. In 2017, due to the renewed interest in alternative and sustainable binders and supplementary cementitious materials, a new series was launched by Sherbrooke University (Professor Arezki Tagnit-Hamou), American Concrete Institute (ACI), and the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM)—in association with a number of other organizations in Canada, the United States, and the Caribbean—sponsored the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2017). The conference was held October 2-4, 2017, in Montréal, Canada. The conference proceedings, containing 50 reviewed papers from more than 33 countries, were published as ACI SP-320. In 2021, UdeS, ACI, and RILEM, in association with Université de Toulouse and a number of other organizations in Canada, the United States, and Europe, sponsored the 11th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2021). The conference was scheduled to take place in Toulouse, but due to COVID, it was held online June 7-10, 2021. The conference proceedings, containing 53 reviewed papers from more than 21 countries, were published as ACI SP-349. In 2024, the conference was finally held in-person in Toulouse from June 23 to 26, 2024, with the support of UdeS, ACI, and RILEM in association with Université de Toulouse (Martin Cyr) and a number of other organizations in Canada, the United States, and Europe. The purpose of this international conference was to present the latest scientific and technical information in the field of supplementary cementitious materials and novel binders for use in concrete. The new aspect of this conference is to highlight advances in the field of alternative and sustainable binders and supplementary cementitious materials for the transition to low carbon concrete. The conference proceedings, containing 78 reviewed papers from more than 25 countries, have been published as ACI SP-362. Thanks are extended to the members of the International Scientific Committee who reviewed the papers. The cooperation of the authors in accepting the reviewers’ suggestions and revising their manuscripts accordingly is greatly appreciated. The involvement of the steering committee and the organizing committee is gratefully acknowledged. Special thanks go to Chantal Brien (Université de Sherbrooke) for the administrative work associated with the conference and for processing the manuscripts for both the ACI proceedings and the supplementary volume. Arezki Tagnit Hamou, Editor Chairman, 12th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2024). Sherbrooke, Canada, 2024

DOI:

10.14359/51742032


Document: 

CI4512Goodwin

Date: 

December 1, 2023

Author(s):

Fred R. Goodwin, Benoit Bissonnette, Dave Fuller, Mark Nelson, and Joshua Lloyd

Publication:

Concrete International

Volume:

45

Issue:

12

Abstract:

The recently published Guide for Cementitious Repair Material Data Sheet (ACI PRC-364.3-22/ICRI 320.3R-2022) is a result of cooperation between the American Concrete Institute (ACI) and International Concrete Repair Institute (ICRI). This document is a first in the industry to provide this information in a standardized, logical, and consistent format so that repair materials can be appropriately selected and specified.


Document: 

CI4406Q&A

Date: 

June 1, 2022

Author(s):

Bruce A. Suprenant

Publication:

Concrete International

Volume:

44

Issue:

6

Abstract:

A 5 ft (1.5 m) thick foundation mat slab has been prepared for concrete placement. Reinforcing steel was installed over a 3 in. (76 mm) thick mud (or working) slab with an area of approximately 25,000 ft2 (2320 m2) finished flat (that is, no slopes or contours). There are puddles of standing rainwater deposited yesterday on top of the mud slab in random locations that range in depth up to 1/2 in. (13 mm). Are there any ACI requirements for placing concrete in such conditions?


Document: 

SP349

Date: 

April 28, 2021

Publication:

Symposium Papers

Volume:

349

Abstract:

Sponsors: American Concrete Institute, RILEM, Université de Sherbrooke, CRIB, Université Toulouse III, Lmdc Toulouse, Kruger Biomaterials, Euclid Chemical, Prodexim International inc., BASF Master Builders, ACAA Editor: Arezki Tagnit-Hamou In July 1983, the Canada Centre for Mineral and Energy Technology (CANMET) of Natural Resources Canada, in association with the American Concrete Institute (ACI) and the U.S. Army Corps of Engineers, sponsored a five-day international conference at Montebello, Quebec, Canada, on the use of fly ash, silica fume, slag and other mineral by-products in concrete. The conference brought together representatives from industry, academia, and government agencies to present the latest information on these materials and to explore new areas of needed research. Since then, eight other such conferences have taken place around the world (Madrid, Trondheim, Istanbul, Milwaukee, Bangkok, Madras, Las Vegas, and Warsaw). The 2007 Warsaw conference was the last in this series. In 2017, due to renewed interest in alternative and sustainable binders and supplementary cementitious materials, a new series was launched by Sherbrooke University (UdeS); ACI; and the International Union of Laboratories and Experts in Construction materials, Systems, and Structures (RILEM). They, in association with a number of other organizations in Canada, the United States, and the Caribbean, sponsored the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2017). The conference was held in Montréal, QB, Canada, from October 2 to 4, 2017. The conference proceedings, containing 50 refereed papers from more than 33 countries, were published as ACI SP-320. In 2021, UdeS, ACI, and RILEM, in association with Université de Toulouse and a number of other organizations in Canada, the United States, and Europe, sponsored the 11th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2021). The conference was held online from June 7 to 10, 2021. The conference proceedings, containing 53 peer reviewed papers from more than 14 countries, were published as ACI SP-349. The purpose of this international conference was to present the latest scientific and technical information in the field of supplementary cementitious materials and novel binders for use in concrete. The new aspect of this conference was to highlight advances in the field of alternative and sustainable binders and supplementary cementitious materials, which are receiving increasing attention from the research community. To all those whose submissions could not be included in the conference proceedings, the Institute and the Conference Organizing Committee extend their appreciation for their interest and hard work. Thanks are extended to the members of the international scientific committee to review the papers. Without their dedicated effort, the proceedings could not have been published for distribution at the conference. The cooperation of the authors in accepting reviewers’ suggestions and revising their manuscripts accordingly is greatly appreciated. The assistance of Chantal Brien at the Université de Sherbrooke is gratefully acknowledged for the administrative work associated with the conference and for processing the manuscripts, both for the ACI proceedings and the supplementary volume. Arezki Tagnit Hamou, Editor Chairman, eleventh ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2021). Sherbrooke, Canada 2021

DOI:

10.14359/51732819


Document: 

SP326-25

Date: 

August 10, 2018

Author(s):

Arnaud Castel, Mohammad Khan, Aziz Mahmood, and Stephen Foster

Publication:

Symposium Papers

Volume:

326

Abstract:

This paper evaluates the performance of steel furnace slag (SFS) aggregate in low calcium geopolymer concrete and its potential to be used in making high-density concrete for application in breakwater armour units. The geopolymer binder is a blend of 90% low calcium fly ash and 10% ground granulated blast furnace slag (GGBFS). Mechanical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength and elastic modulus than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. No traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. The incorporation of Ca into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reason for the higher compressive strength observed in GPC with SFS aggregate. The Incorporation of the relevant concrete properties in Hudson’s equation shows that SFS aggregate geopolymer concrete can significantly improve the stability of breakwater structures.

DOI:

10.14359/51711007


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.