Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 295 Abstracts search results
Document:
SP-360_45
Date:
March 1, 2024
Author(s):
C. Barris, F. Ceroni, A. Perez Caldentey
Publication:
Symposium Papers
Volume:
360
Abstract:
Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement. This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.
Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement.
This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.
DOI:
10.14359/51740657
SP-360_01
Junrui Zhang, Enrique del Rey Castillo, Ravi Kanitkar, Aniket D Borwankar, and Ramprasath R
A systematic literature review was conducted on pure tension strengthening of concrete structures using fiber-reinforced polymer (FRP), specifically for larger FRP tie applications. This work yielded a dataset of 1,627 direct tension tests, and highlighted the limitation of existing studies on studying thick and long FRP ties, which are typical in real construction scenarios. To overcome this shortcoming, 51 single lap shear tests were conducted on thicker and longer FRP ties, with the dimensions being 0.5 to 6 mm [0.02 to 0.24 in.] thickness, and 300 to 1,524 mm [12 to 60 in.] long. The critical parameters under consideration were concrete compressive strength, FRP thickness, and bond length. The findings demonstrate that thicker and therefore stiffer FRP ties have higher debond force capacity, while longer ties exhibit greater post-elastic deformation capacity but do not affect the debond force capacity. Concrete had a limited effect on either debond force or deformation capacity. A strength model is proposed for FRP systems under axial pure tension, which aligns well with both the published and tested results. This paper focuses on the development of design guidelines and codes to predict the debond strain for EB-FRP systems incorporating thicker and longer FRP ties, aiming to enhance the applicability of FRP to real-world construction scenarios.
10.14359/51740613
SP-360_41
Yasser M. Selmy, Amr E. Abdallah, and Ehab F. El-Salakawy
The seismic performance of reinforced concrete (RC) structures relies on their ability to dissipate earthquake-induced energy through hysteric behavior. Ductility, energy dissipation, and viscous damping are commonly used as performance indicators for steel-RC seismic force-resisting systems (SFRSs). However, while several previous studies have proposed energy-based indices to assess energy dissipation and damping of steel-RC SFRSs, there is a lack of research on fiber-reinforced polymer (FRP)-RC structures. This study examines the applicability of the existing energy dissipation and damping models developed for steel-RC columns to glass FRP (GFRP)-RC ones, where the relationships between energy indices and equivalent viscous damping versus displacement ductility were analyzed for GFRP-RC circular columns from the literature. In addition, prediction models were derived to estimate energy dissipation, viscous damping, and stiffness degradation of such types of columns. It was concluded that similar lower limit values for energy-based ductility parameters of steel-RC columns can be applied to GFRP-RC circular columns, whereas the minimum value and analytical models for the equivalent viscous damping ratio developed for steel-RC columns are not applicable. The derived models for energy indices, viscous damping, and stiffness degradation had an R2 factor of up to 0.99, 0.7, and 0.83, respectively. These findings contribute to the development of seismic design provisions for GFRP-RC structures, addressing the limitations in current codes and standards.
10.14359/51740653
SP-360_35
Ramin Rameshni, PhD, P.Eng., Reza Sadjadi, PhD, P.Eng, Melanie Knowles, P.Eng., M.Eng.
Deterioration of concrete bridges has resulted in reduction of their service lives and increase in required maintenance which is associated with cost and inconvenience to the public. A prevalent cause of concrete bridge deterioration is corrosion which initiates by chloride ions penetration past the protecting layers and by corroding the steel reinforcement. Because corrosion in prestressed concrete members has more serious consequences than in non-prestressed reinforced concrete, it is important that bridge designers and inspectors be aware of the potential problems and environments that may cause the issue and address them as soon as they are detected. This paper discusses a case study of a highway bridge (Hyndman Bridge, Ontario) including its deterioration, causes, mitigation measures, structural evaluation and the selected repair method. The rehabilitation design is based on guidelines of the latest editions of the CHDBC and ACI 440.2R. CFRP strengthening techniques have been proposed to address the flexure and shear deficient capacity of deteriorated girders. It is concluded that by using a suitable repair methodology employing CFRP, it is possible to upgrade the bridge to comply with the latest requirements of the code and increase the service life of the structure which otherwise would have needed imminent replacement.
10.14359/51740647
SP-360_30
Yasser M. Selmy and Ehab F. El-Salakawy
The seismic performance of reinforced concrete (RC) bridge columns subjected to multidirectional ground motions is a critical issue, as these columns can experience axial compression, bending, and torsional loading. Moreover, steel corrosion is a significant concern in existing bridges, leading to deficiencies in steel-RC structural members. The use of glass fiber-reinforced polymer (GFRP) reinforcement has been established as a practical and effective solution to mitigate the corrosion-related issues associated with traditional steel reinforcement in concrete structures. However, the dissimilar mechanical properties of GFRP and steel have raised apprehensions regarding its feasibility in seismic-resistant structures. The current study involves conducting an experimental investigation to assess the feasibility of utilizing GFRP reinforcement as a substitute for conventional steel reinforcement in circular RC bridge columns subjected to cyclic lateral loading, which induces shear, bending, and torsion. One column was reinforced with GFRP bars and stirrups, while the other column, served as a control and was reinforced with conventional steel reinforcement. The aim of this investigation was to analyze the lateral displacement deformability and energy dissipation characteristics of the GFRP-RC column. The results showed that GFRP-RC column exhibited stable post-peak behavior and high levels of deformability under the applied combined loading. Additionally, with a torsion-to-bending moment ratio of 0.2, both columns reached similar lateral load and torsional moment capacities and were able to attain lateral-drift capacities exceeding the minimum requirements of North American design codes and guidelines.
10.14359/51740642
Results Per Page 5 10 15 20 25 50 100