ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 1065 Abstracts search results

Document: 

SP-363-8

Date: 

July 1, 2024

Author(s):

Ali Alatify and Yail J. Kim

Publication:

Symposium Papers

Volume:

363

Abstract:

This paper presents the prediction of bond strength between ultra-high performance concrete (UHPC) and fiber reinforced polymer (FRP) reinforcing bars using an artificial neuronal network (ANN) approach. A large amount of datasets, consisting of 183 test specimens, are collected from literature and an ANN model is trained and validated. The ANN model includes six variable inputs (bar diameter, concrete cover, embedment length, fiber content, concrete strength, and rebar strength) and one output parameter (bond strength). The model performs better than other models excerpted from existing design guidelines and previously published papers. Follow-up studies are expected to examine the individual effects of the predefined input parameters on the bond strength of UHPC interfaced with FRP rebars.

DOI:

10.14359/51742111


Document: 

SP-363-3

Date: 

July 1, 2024

Author(s):

Megan S. Voss, Daniel Alabi, Raid S. Alrashidi, Taylor A. Rawlinson, Christopher C. Ferraro, H. R. Hamilton, Joel B. Harley, and Kyle A. Riding

Publication:

Symposium Papers

Volume:

363

Abstract:

The movement of ultra-high-performance concrete (UHPC) toward wide scale acceptance within the concrete industry has generated interest in developing improved test methods to provide quality assurance for this material. Most test methods currently used to measure the tensile behavior of ultra-high-performance concrete require specialized testing equipment that is not typically owned by precast or ready-mix production facilities. These test methods provide reliable data for quality assurance of newly developed concrete mixes, but they are impractical as quality-control tests, which would need to be performed for every UHPC placement. This paper presents the development of a simple and inexpensive test to measure tensile strength and ductility for UHPC and serve as a quality-control test. This method was developed from the double-punch test, commonly referred to as the “Barcelona test,” but has been revised to incorporate substantial changes to the loading and data collection requirements to eliminate the need for expensive, specialized equipment. It was determined that the modified test method could produce reliable results using a load-controlled testing procedure with manually recorded data points taken every 0.635 mm (0.025 inches) of vertical displacement for ductile concrete specimens. It was also determined that specimen surface grinding, loading rate, and punch alignment did not significantly influence the test results. However, the fabrication of the specimens, specifically the rate and method at which the molds were filled, had a significant effect on the results. Accordingly, any recommended standardized test method based off of this procedure should have requirements on specimen fabrication.

DOI:

10.14359/51742106


Document: 

SP-360_18

Date: 

March 1, 2024

Author(s):

Mohamed Bouabidi, Slimane Metiche, Radhouane Masmoudi.

Publication:

Symposium Papers

Volume:

360

Abstract:

The current market of utility poles is growing rapidly. The dominant materials that are used for this purpose are generally wood, steel, concrete, and fiber-reinforced polymers (FRP). FRP poles are gaining wide acceptance for what they provide in terms of strength and durability, lack of maintenance and a high strength to weight ratio. Hybrid structures can combine the best properties of the materials used, where each part enhances the structure to provide a balanced structure. This study evaluates a hybrid structure composed of three main layers, an outer FRP shell, a hollow concrete core and an inner hollow steel tube, this whole system is to be utilized as a tapered utility pole. The outer FRP shell provides protection and enhances the strength of the pole, the concrete core provides stiffness, and the inner steel tube enhances the flexural performance while reducing the volume in consequence the weight of the structure compared to a fully filled pole. A new design for a 12-feet long hybrid FRP pole using finite element is presented in this paper. The design was based on a parametric study evaluating the effect of key-design parameters (i.e., the thickness of FRP, the volume and strength of the concrete, the thickness and diameter of the steel tube). Concrete strength affected the general performance of the pole, the decrease in concrete strength due to utilizing lightweight concrete was compensated with increasing the FRP pole thickness. For the same pole configuration, with incremental variation of the FRP thickness values from 3 mm to 7 mm up to the initial concrete cracking load, no significant variation of the pole top deflection was observed. However, at failure load the increase of FRP thickness from 3 mm to 7 mm decreased the ultimate tip deflection by 50%. New hybrid utility poles have the potential to be an interesting alternative solution to the conventional poles as they can provide better durability and mechanical performances.

DOI:

10.14359/51740630


Document: 

SP360

Date: 

March 1, 2024

Author(s):

ACI Committee 440

Publication:

Symposium Papers

Volume:

360

Abstract:

The 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16) was organized by ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) and held on March 23 and 24, 2024, at the ACI Spring 2024 Convention in New Orleans, LA. FRPRCS-16 gathers researchers, practitioners, owners, and manufacturers from the United States and abroad, involved in the use of FRPs as reinforcement for concrete and masonry structures, both for new construction and for strengthening and rehabilitation of existing structures. FRPRCS is the longest running conference series on the application of FRP in civil construction, commencing in Vancouver, BC, in 1993. FRPRCS has been one of the two official conference series of the International Institute for FRP in Construction (IIFC) since 2018 (the other is the CICE series). These conference series rotate between Europe, Asia, and the Americas, with alternating years between CICE and FRPRCS. The ACI convention has previously cosponsored the FRPRCS symposium in Anaheim (2017), Tampa (2011), Kansas City (2005), and Baltimore (1999). This Special Publication contains a total of 52 peer-reviewed technical manuscripts from 20 different countries from around the world. Papers are organized in the following topics: (1) FRP Bond and Anchorage in Concrete Structures; (2) Strengthening of Concrete Structures using FRP Systems; (3) FRP Materials, Properties, Tests and Standards; (4) Emerging FRP Systems and Successful Project Applications; (5) FRP-Reinforced Concrete Structures; (6) Advances in FRP Applications in Masonry Structures; (7) Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures; (8) Behavior of Prestressed Concrete Structures; (9) FRP Use in column Applications; (10) Effect of Extreme Events on FRP-Reinforced/Strengthened Structures; (11) Durability of FRP Systems; and (12) Advanced Analysis of FRP Reinforced Concrete Structures. The breadth and depth of the knowledge presented in these papers is clear evidence of the maturity of the field of composite materials in civil infrastructure. The ACI Committee 440 is witness to this evolution, with its first published ACI CODE-440.11, “Building Code Requirements for Structural Concrete with Glass Fiber Reinforced Polymer (CFRP) Bars,” published in 2022. A second code document on fiber reinforced polymer for repair and rehabilitation of concrete is under development. The publication of the sixteenth volume in the symposium series could not have occurred without the support and dedication of many individuals. The editors would like to recognize the authors who diligently submitted their original papers; the reviewers, many of them members of ACI Committee 440, who provided critical review and direction to improve these papers; ACI editorial staff who guided the publication process; and the support of the American Concrete Institute (ACI) and the International Institute for FRP in Construction (IIFC) during the many months of preparation for the Symposium.

DOI:

10.14359/51740670


Document: 

SP-360_52

Date: 

March 1, 2024

Author(s):

Taylor J. Brodbeck, Giorgio T. Proestos, and Rudolf Seracino

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents the current code provisions on strut-and-tie analysis and design of disturbed regions of deep concrete beams reinforced with fiber-reinforced polymer reinforcing (FRP) bars. A literature review of the large-scale experiments published to date is included with a comparison of their results to strut-and-tie predictions. Several published works have recommended modifications to strut-and-tie provisions for FRP reinforced deep beams, and those modifications are summarized within this paper.

DOI:

10.14359/51740664


12345...>>

Results Per Page