ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 791 Abstracts search results

Document: 

SP-363-8

Date: 

July 1, 2024

Author(s):

Ali Alatify and Yail J. Kim

Publication:

Symposium Papers

Volume:

363

Abstract:

This paper presents the prediction of bond strength between ultra-high performance concrete (UHPC) and fiber reinforced polymer (FRP) reinforcing bars using an artificial neuronal network (ANN) approach. A large amount of datasets, consisting of 183 test specimens, are collected from literature and an ANN model is trained and validated. The ANN model includes six variable inputs (bar diameter, concrete cover, embedment length, fiber content, concrete strength, and rebar strength) and one output parameter (bond strength). The model performs better than other models excerpted from existing design guidelines and previously published papers. Follow-up studies are expected to examine the individual effects of the predefined input parameters on the bond strength of UHPC interfaced with FRP rebars.

DOI:

10.14359/51742111


Document: 

SP-363-4

Date: 

July 1, 2024

Author(s):

Naveen Saladi, Chandni Balachandran, Robert Spragg, Zachary Haber, and Benjamin Graybeal

Publication:

Symposium Papers

Volume:

363

Abstract:

Corrosion of steel reinforcement is one of the primary contributing factors to bridge deck deterioration. Based on the extent of corrosion, different corrosion mitigation strategies can be used to extend the service life of a bridge deck. Bridge deck overlays are efficient tools in reducing active corrosion. While there are multiple overlay solutions that are commonly deployed, including concrete-based and polymer-based systems, ultra-high performance concrete (UHPC) overlays have gained interest from bridge owners in recent years. Another corrosion mitigation strategy is the application of corrosion-inhibiting chemicals and sealers to a concrete surface to reduce the ingress of deleterious ions. The purpose of this paper is to compare different corrosion mitigation strategies and study the effects of such techniques on the bond between the UHPC overlay and the substrate concrete. UHPC overlays were found to be effective in reducing corrosion rates by more than 50 percent. Sealers and corrosion inhibitors applied to the concrete substrate in combination with placing a UHPC overlay reduced the corrosion rates even further. However, sealers and corrosion inhibitors appeared to negatively affect bond strength, potentially increasing the likelihood of overlay delamination.

DOI:

10.14359/51742107


Document: 

SP360

Date: 

March 1, 2024

Author(s):

ACI Committee 440

Publication:

Symposium Papers

Volume:

360

Abstract:

The 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16) was organized by ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) and held on March 23 and 24, 2024, at the ACI Spring 2024 Convention in New Orleans, LA. FRPRCS-16 gathers researchers, practitioners, owners, and manufacturers from the United States and abroad, involved in the use of FRPs as reinforcement for concrete and masonry structures, both for new construction and for strengthening and rehabilitation of existing structures. FRPRCS is the longest running conference series on the application of FRP in civil construction, commencing in Vancouver, BC, in 1993. FRPRCS has been one of the two official conference series of the International Institute for FRP in Construction (IIFC) since 2018 (the other is the CICE series). These conference series rotate between Europe, Asia, and the Americas, with alternating years between CICE and FRPRCS. The ACI convention has previously cosponsored the FRPRCS symposium in Anaheim (2017), Tampa (2011), Kansas City (2005), and Baltimore (1999). This Special Publication contains a total of 52 peer-reviewed technical manuscripts from 20 different countries from around the world. Papers are organized in the following topics: (1) FRP Bond and Anchorage in Concrete Structures; (2) Strengthening of Concrete Structures using FRP Systems; (3) FRP Materials, Properties, Tests and Standards; (4) Emerging FRP Systems and Successful Project Applications; (5) FRP-Reinforced Concrete Structures; (6) Advances in FRP Applications in Masonry Structures; (7) Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures; (8) Behavior of Prestressed Concrete Structures; (9) FRP Use in column Applications; (10) Effect of Extreme Events on FRP-Reinforced/Strengthened Structures; (11) Durability of FRP Systems; and (12) Advanced Analysis of FRP Reinforced Concrete Structures. The breadth and depth of the knowledge presented in these papers is clear evidence of the maturity of the field of composite materials in civil infrastructure. The ACI Committee 440 is witness to this evolution, with its first published ACI CODE-440.11, “Building Code Requirements for Structural Concrete with Glass Fiber Reinforced Polymer (CFRP) Bars,” published in 2022. A second code document on fiber reinforced polymer for repair and rehabilitation of concrete is under development. The publication of the sixteenth volume in the symposium series could not have occurred without the support and dedication of many individuals. The editors would like to recognize the authors who diligently submitted their original papers; the reviewers, many of them members of ACI Committee 440, who provided critical review and direction to improve these papers; ACI editorial staff who guided the publication process; and the support of the American Concrete Institute (ACI) and the International Institute for FRP in Construction (IIFC) during the many months of preparation for the Symposium.

DOI:

10.14359/51740670


Document: 

SP-360_51

Date: 

March 1, 2024

Author(s):

Todor Zhelyazov, Eythor Rafn Thorhallsson, Jonas Thor Snaebjornsson

Publication:

Symposium Papers

Volume:

360

Abstract:

The study delves into modeling the interface between Fiber-Reinforced Polymer (FRP) and concrete, with a specific emphasis on simulating the gradual deterioration of bond strength. A model rooted in continuum damage mechanics is integrated with an empirically derived relationship to address interfacial shear failure. Material models are defined for the concrete, the externally bonded FRP reinforcement, and the adhesive layer. These material models are implemented in finite element simulations, replicating experimental setups widely used to investigate the FRP-concrete interface. Key results are reported and discussed. More precisely, the numerically obtained load-slip relationships for the interface and visualizations of the damaged zones in concrete are provided. The numerical results are in close agreement with existing experimental data. The finite element analyses suggest that concrete degradation is not limited to the areas near the adhesive joint. This implies that the adhesive joint could influence the overall behavior of the structural elements, even when debonding failures are prevented by anchorage devices.

DOI:

10.14359/51740663


Document: 

SP-360_50

Date: 

March 1, 2024

Author(s):

Haitham A. Ibrahim, Mohamed F. M. Fahmy, and Seyed Saman Khedmatgozar Dolati

Publication:

Symposium Papers

Volume:

360

Abstract:

This study numerically investigates the long-term effectiveness of using externally bonded fiber-reinforced polymer (FRP) plates as a strengthening technique for reinforced concrete (RC) beams. A two-dimensional finite element model (FEM) that can accurately predict the flexural behavior of FRP strengthened RC beams, is developed. Weathering exposure time of 0.0, 15.5, 35, and 75 years were considered. In total, 28 different concrete beams were modelled using the developed FEM. The results show that prolonged exposure to natural weathering can cause premature FRP debonding, even before reaching the yielding load. The ultimate load capacity, midspan deflection, and ductility of strengthened RC beams can be reduced by up to 38%, 62%, and 100%, respectively. In addition, the findings raised concerns about the applicability of the ACI 440.2R-17 provisions for calculating the design flexural strength of FRP strengthened RC beams with prolonged exposure to natural weathering. To ensure a safe design for strengthened beams with FRP debonding or concrete crushing failure modes, this paper recommends an additional reduction factor ranging from 0.8 to 0.9. Furthermore, periodic inspection using non-destructive testing and FRP anchorage system are highly recommended for both existing and new applications of FRP in structures.

DOI:

10.14359/51740662


12345...>>

Results Per Page