ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 40 Abstracts search results
Document:
SP-343_48
Date:
October 1, 2020
Author(s):
Redaelli, D.; Nseir, J.Y.
Publication:
Symposium Papers
Volume:
343
Abstract:
This paper presents the results of a numerical study carried out by the authors to better understand the structural behavior of prestressed beams with web openings and to identify numerical modelling techniques that allow to adequately predict such behavior. Ultra-High Performance Fibre Reinforced Concrete (UHPC) beams are considered, with a focus on shear-controlled failure modes. For all the beams considered in this study, prestressing is used to resist the main bending moment. However, no other reinforcement is added to the beams, in order to emphasize the structural contribution of the fibers and to focus on solutions that could be economically competitive for the precast industry. The results of non-linear simulations performed with existing finite elements codes are compared and validated against experimental results of tests carried out at the University of Applied Sciences of Western Switzerland. The main assumptions of the numerical simulations are discussed, as well as the results and the limits of the analysis.
CI4209Clark
September 1, 2020
Jamie V. Clark, Tyler J. Deboodt, David A. Lange, Jason H. Ideker, and O. Burkan Isgor
Concrete International
42
Issue:
9
X-ray computed tomography (XCT) is noninvasive and nondestructive. It produces three-dimensional digital reconstructions of samples, allowing for a comprehensive view of microstructure. The article discusses the use of XCT to examine cementitious materials. Three case studies are provided: characterization of cellular concrete microstructure, quantitative analysis of cement phases, and real-time investigation of an alkali-silica reaction.
DOI:
10.14359/51728150
SP243-01
April 1, 2007
C.-S. Shon, D. Saylak, D.G. Zollinger, and A.K. Mukhopadhyay
243
The roadside safety barrier is a protective barrier that is erected around a racetrack or in the middle of a dual-lane highway in order to reduce the severity of accidents. Recently, interest in portable roadside safety barriers has heightened the interest in the development of a low-cost and high-performance alternative to the conventional safety barrier system. A study has been undertaken to characterize fresh and hardened properties of flue gas desulfurization (FGD) cellular concrete (CC) using foaming admixture towards the development of a lightweight roadside safety barrier. Test results indicate that FGD CC using a foaming admixture can be effectively used in manufacturing lightweight roadside safety barriers.
10.14359/18739
SP226-03
March 1, 2005
F. H. Fouad and J. Dembowski
226
Autoclaved aerated concrete (AAC) is a lightweight uniform cellular material, first developed in Sweden in 1929. Since that time, plain and reinforced AAC building components have been widely used in Europe and other parts of the world. Until recently, however, AAC was relatively unknown to the United States precast construction market. Today, AAC prefabricated elements are gaining rapid acceptance in the United States due primarily to increasing energy cost, environmental concerns, and the ease of construction using AAC elements. Although AAC is a well-recognized building material in Europe, very little research work has been done on U.S.-produced AAC products. The primary objective of this work was to study the structural behavior of U.S.-made reinforced AAC elements. The laboratory test program included most commonly used reinforced AAC elements: floor panels, lintels, and wall panels. Two U.S. manufacturers supplied the AAC elements. Floor panels and lintels were tested in bending, whereas the wall panels were tested under axial or eccentric loading. The ultimate load capacity, cracking, deflection, and failure mode were observed and recorded for each test. The results provide a database that will be used to refine the analytical methods for the structural design of reinforced AAC elements. This information is needed to enhance AAC design methodologies and lay the foundation for establishing AAC as a reliable engineered construction material in the U.S.
10.14359/14390
SP226-08
N. Neithalath, J. Weiss, and J. Olek
Three classes of specialty cementitious materials were evaluated for their potential benefits in sound absorption including a Foamed Cellular Concrete (FCC) with density ranging from 400 – 700 kg/m3, Enhanced Porosity Concrete (EPC) incorporating 20-25% open porosity, and a Cellulose Cement Composite (CCC) with density 1400 – 1700 kg/m3. Cylindrical specimens of these materials were tested for acoustic absorption in an impedance tube. The FCC specimens showed absorption coefficients ranging from 0.20 to 0.30, the higher value for lower density specimens. The closed disconnected pore network of FCC hinders sound propagation, thereby resulting in a reduced absorption, even though the porosity is relatively high. The most beneficial acoustic absorption was observed for EPC mixtures. When gap-graded with proper aggregate sizes, these no-fines EPC mixtures dissipate sound energy inside the material through frictional losses. The cellulose fiber cement composites use cellulose fibers at high volume fractions (~7.5%), which are believed to provide continuous channels inside the material where the sound energy can be attenuated. By engineering the pore structure (by careful aggregate grading as in EPC, or incorporating porous inclusions like morphologically altered cellulose fibers) cementitious materials that have the potential for significant acoustic absorption could be developed.
10.14359/14395
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer