International Concrete Abstracts Portal

Showing 1-5 of 83 Abstracts search results

Document: 

SP-362_66

Date: 

June 18, 2024

Author(s):

M.T. de Grazia, L.F.M. Sanchez, and A. Leemann

Publication:

Symposium Papers

Volume:

362

Abstract:

Using particle packing models (PPMs) in combination with limestone fillers has been shown to be effective in proportioning eco-efficient concrete mixtures with reduced Portland cement content, resulting in suitable performance in fresh and short-term hardened states. However, the decrease in Portland cement and increase in limestone fillers may lower the pH of concrete, raising concerns about durability and long-term performance, potentially leading to increased corrosion of steel reinforcement in the presence of carbonation or chlorides. In this study, the performance of three eco-efficient concrete mixtures with varying cement (250, 200, and 150 kg/m3) and inert filler contents is evaluated against accelerated chloride exposure. The findings highlight the influence of the mixture proportioning and water-to-cement ratio on the resistance to chloride ingress. Ultimately, it is verified that the distance between cement particles is a major contribution towards chloride ingress.

DOI:

10.14359/51742016


Document: 

SP-362_43

Date: 

June 14, 2024

Author(s):

Lesley Ko, Jeffery Bury, Charles Nmai

Publication:

Symposium Papers

Volume:

362

Abstract:

Maintaining workability can be a challenge when the total cement content of a concrete mixture is minimized in order to lower the carbon footprint. This is especially the case in everyday concrete where Portland cement content is mostly optimized for a targeted strength. Unlike high-performance or self-consolidating concretes (SCC) which commonly have high cement or cementitious materials contents, a minimum paste volume is generally required in normal strength concrete (NSC) mixtures to ensure adequate workability for the application and to be acceptable in the field. In this study, a new generation of rheology-modifying water-reducing admixture that improves concrete rheology is used to further reduce cement content and provide favorable workability for concrete applications. Comparisons to reference concrete are presented for their fresh and hardened properties, including plastic viscosity, dynamic yield stress, finishability, pumpability, and targeted strength. By combining concrete technology and this new rheology modifying water-reducing admixture, an economical, workable low-carbon concrete can be achieved.

DOI:

10.14359/51741012


Document: 

SP-362_08

Date: 

June 5, 2024

Author(s):

Mojtaba Kohandelnia and Ammar Yahia

Publication:

Symposium Papers

Volume:

362

Abstract:

Earthen construction techniques in sustainable building can offer numerous advantages. However, it comes with certain limitations, with the most notable one being the labor-intensive and time-consuming nature of the construction process. To address this challenge, self-consolidating earth concrete (SCEC) emerges as a promising solution, particularly when dealing with the presence of fine clay and silt particles, as it can help attain the desired rheological properties more efficiently. In this study, supplementary cementitious materials (SCMs) such as cement, metakaolin, and limestone filler have been used as stabilizers to evaluate their impact on the workability and rheology of earth-based mixtures. A high-range water-reducing polycarboxylate ether (PCE), either with or without the initial incorporation of sodium hexametaphosphate, was applied to various clay compositions. The presence of finer clay particles required a higher dosage of admixture to achieve the desired workability, resulting in elevated yield stress and plastic viscosity values.

DOI:

10.14359/51740878


Document: 

SP361

Date: 

March 1, 2024

Author(s):

ACI Committees ACI Committees 130 and E702

Publication:

Symposium Papers

Volume:

361

Abstract:

Concrete has played a pivotal role in shaping the modern world’s infrastructure and the built environment. Its unparalleled versatility, durability, and structural integrity have made it indispensable in the construction industry. From skyscrapers to long-span bridges, water reservoirs, dams, and highways, the ubiquitous presence of concrete in modern society underscores its significance in global development. As we stand at the crossroads of environmental awareness and the imperative to advance our societies, the sustainability of concrete production and utilization is becoming a new engineering paradigm. The immense demand for concrete, driven by urbanization and infrastructure development, has prompted a critical examination of its environmental impact. One of the most pressing concerns is the substantial carbon footprint associated with traditional concrete production. The production of cement, a key ingredient in concrete, is a notably energy-intensive process that releases a significant amount of carbon dioxide (CO2) into the atmosphere. As concrete remains unparalleled in its ability to provide structural functionality, disaster resilience, and containment of hazardous materials, the demand for concrete production is increasing, while at the same time, the industry is facing the urgency to mitigate its ecological consequences. This special publication investigates the multi-faceted realm of concrete sustainability, exploring the interplay between its engineering properties, environmental implications, and novel solutions, striving to provide an innovative and holistic perspective. In recent years, the concrete industry has witnessed a surge of innovation and research aimed at revolutionizing its sustainability. An array of cutting-edge technologies and methodologies has emerged, each offering promise in mitigating the environmental footprint of concrete. Notably, the integration of supplementary cementitious materials, such as calcined clays and other industrial byproducts, has gained traction to reduce cement content while enhancing concrete performance. Mix design optimization, coupled with advanced admixtures, further elevates the potential for creating durable, strong, and eco-friendly concrete mixtures. Concrete practitioners will gain an advanced understanding of a wide variety of strategies that are readily implementable and oftentimes associated with economic savings and durability enhancement from reading these manuscripts. The incorporation of recycled materials, such as crushed concrete and reclaimed aggregates, not only reduces waste but also lessens the demand for virgin resources. Furthermore, the adoption of efficient production techniques, along with the exploration of carbon capture and utilization technologies, presents an optimistic path forward for the industry. This special publication aspires to contribute to the ongoing discourse on concrete sustainability, offering insights, perspectives, and actionable pathways toward a more environmentally conscious future.

DOI:

10.14359/51740669


Document: 

CI4408Scott

Date: 

August 1, 2022

Author(s):

Ryan Scott

Publication:

Concrete International

Volume:

44

Issue:

8

Abstract:

The author offers a few options for saving a broken-down mixer truck full of concrete, from using hydraulic lines from another truck to chemical additions into a spinning drum to delay setting time. Results of testing of hydration stabilizers, table sugar, and different soft drinks on mortar mini-mixtures are provided as well as in-depth discussion on adding regular and diet soft drinks.


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer