Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 2199 Abstracts search results
Document:
SP-363-8
Date:
July 1, 2024
Author(s):
Ali Alatify and Yail J. Kim
Publication:
Symposium Papers
Volume:
363
Abstract:
This paper presents the prediction of bond strength between ultra-high performance concrete (UHPC) and fiber reinforced polymer (FRP) reinforcing bars using an artificial neuronal network (ANN) approach. A large amount of datasets, consisting of 183 test specimens, are collected from literature and an ANN model is trained and validated. The ANN model includes six variable inputs (bar diameter, concrete cover, embedment length, fiber content, concrete strength, and rebar strength) and one output parameter (bond strength). The model performs better than other models excerpted from existing design guidelines and previously published papers. Follow-up studies are expected to examine the individual effects of the predefined input parameters on the bond strength of UHPC interfaced with FRP rebars.
DOI:
10.14359/51742111
SP-363-6
Kuo-Wei Wen, Manuel Bermudez, and Chung-Chan Hung
Ultra-high-performance concrete (UHPC) features tensile strain-hardening behavior and a high compressive strength. Existing studies on the shear behavior of UHPC structural members have been focused on prestressed UHPC girders. More experimental data of the shear behavior of non-prestressed UHPC beams are necessary to quantify the safety margin of shear designs for structures. Moreover, while the UHPC members in most studies did not contain coarse aggregate to strengthen their microstructure, the inclusion of coarse aggregate has been shown to substantially reduce the autogenous shrinkage and enhance the elastic modulus for UHPC materials, which is beneficial for structural applications of UHPC. This study experimentally investigated the shear failure behavior of eighteen non-prestressed rectangular UHPC beams. The experimental variables included the volume fraction of fibers, shear span-to-depth ratio of the beams, and coarse aggregate. The detailed shear failure responses of the UHPC beams were discussed in terms of the damage pattern, shear modulus, shear strength, shear strain, and strain energy. The test results showed that the inclusion of coarse aggregate increased the beam shear strength, and its enhancement became more significant with a higher volume fraction of fibers and a lower shear span-to-depth ratio of the beam. In addition to the experimental investigation, a shear strength model for non-prestressed rectangular UHPC beams that accounts for the interactive effect of the key design parameters was developed. An experimental database of the shear strength of the UHPC beams in existing studies was established to assess the performance of the proposed model. It was shown that the proposed model reasonably predicted the shear strength of the UHPC beams in the database with a higher accuracy and lower scatter compared to the results of existing models.
10.14359/51742109
SP-363-5
Philip Loh, Sri Sritharan, Kam Ng, Emad Booya, and Don Gardonio
Through a Change Proposal by Facca Incorporated, the Ontario Ministry of Transportation (MTO) approved the replacement of the as-tendered steel H-piles by newly designed prestressed/precast Ultra-High-Performance Concrete (UHPC) piles for supporting the west abutment of the Lily River Detour Bridge. The 300 mm (~12”) deep UHPC piles were designed and installed at the west abutment based on the previous successful development and testing of a tapered H-shaped pile at Iowa State University. The east abutment, as tendered, was designed to be supported by six steel H-shaped battered piles driven to bedrock. For the west abutment, six UHPC piles were produced and installed using the same batter. Since the site contained occasional boulders and the design intent to drive the piles to bedrock, the UHPC piles were fitted with steel shoes for the first time. All piles were successfully installed to reach the targeted load bearing capacities. After the replacement bridge was constructed, the detour bridge was removed and the UHPC piles were extracted to examine the conditions of the piles. This presentation will provide details of the innovative design of the piles, fabrication and driving of the piles, and lessons learned from analyzing the driving data and removal of the piles. Fellowship and Scholarship recipients. With the help of generous donors from the concrete community, the ACI Foundation awards high-potential undergraduate and graduate students in engineering, construction management, and other appropriate curricula.
10.14359/51742108
SP-363-2
Daniel J. Alabi, Megan S. Voss, Raid S. Alrashidi, Christopher C. Ferraro, Kyle Riding, and Joel B. Harley
Ultra-high performance concrete (UHPC) has seen growing use in the construction industry because of its high compressive, tensile, and flexural strength. The tensile and flexural strength are in part due to the steel fibers added to the UHPC mix. Yet, fibers can segregate due to poor material rheological properties and construction practices, resulting in less than expected material strength. Due to the importance of these fibers, there is a need to verify the volume and orientation of the steel fibers in the UHPC. In this work, we report on the design and testing of electromagnetic sensor systems that are able to test the integrity of the steel fibers in the UHPC structure. We test our sensor system using UHPC samples containing 1% to 3% fiber content by volume and created a calibration based on the results. Our results show a linear relationship between the inductance change versus the fiber percentage with an R-squared value of 99.7 %, which shows that our approach successfully demonstrated the potential of using our approach for characterizing steel fibers in UHPCs.
10.14359/51742105
SP-363-1
Raid S. Alrashidi, Rami Zamzami, Megan S. Voss, Daniel J. Alabi, Christopher C. Ferraro, H. R. Hamilton, Joel B. Harley, and Kyle A. Riding
The presence of chloride ions is one of the most widespread causes of corrosion initiation in reinforcing steel in concrete. Trace chlorides present in cementitious materials or admixtures typically result in very low fresh chloride contents in normal-strength concrete that do not present a danger of corrosion. UHPC mixture designs, however, use much higher dosages of cementitious materials and admixtures that can result in non-negligible total fresh chloride contents. These high chloride values are likely to occur more frequently in the future as more UHPC mixtures are made with locally available materials and alternative cementitious materials and may result in concrete mixtures failing to meet specifications for fresh chloride content limits that are based on mixture proportions used in normal-strength concrete mixtures. UHPC and normal concrete samples were made without fibers and with increasing levels of internally admixed chlorides for four different levels of strength to determine chloride thresholds for internally added chlorides. The chloride threshold for fresh concrete was measured using a slightly modified version of the accelerated test EN 480-14. The water-soluble and acid-soluble chloride ion content of UHPC mixtures tested were measured according to ASTM C1218 and Florida Method FM 5-516 to determine the bound chlorides and fresh chloride limits for corrosion. The results demonstrate that the UHPC had ~ 25% higher chloride threshold than the control mixture when measured as an absolute content per unit volume of concrete. When the UHPC chloride content is normalized by mass of cementitious material, it was found that the amount needed to initiate corrosion may be lower than fresh chloride limits given in ACI-318 and ACI 222. Therefore, the ACI-318 water-soluble chloride limits as a % by mass of cementitious materials were found to be non-conservative for the two of the UHPC mixtures tested and should be re-examined for UHPC.
10.14359/51742104
Results Per Page 5 10 15 20 25 50 100