ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 1807 Abstracts search results
Document:
CI4612TechForum
Date:
December 1, 2024
Publication:
Concrete International
Volume:
46
Issue:
12
Abstract:
To support ACI’s expanding focus on advancing the concrete industry, ACI Foundation hosts Technology Forums, innovation-focused educational and networking events featuring presentations by researchers. This article is the first of three articles that summarize the presentations made at the 2024 Technology Forum.
CI4608Schick
August 1, 2024
Author(s):
Rachel T. Schick
8
The Tunkhannock Viaduct stands as a testament of the durability of concrete and the craftsmanship that went into its construction. It was a significant benefit to the region and has been seen as both an important economic gain and feat of engineering for its time. Today, the bridge is still actively contributing to the transportation industry and is in use for freight service.
SP363
July 25, 2024
ACI Committee 345
Symposium Papers
363
Ultra-high performance concrete (UHPC) is a state-of-the-art cementitious composite. Since the concept of this novel concrete mixture emerged in the 1990s, significant advancements have been made with numerous benefits such as high strength, flowability, high post-cracking tensile resistance, improved durability, reduced maintenance, and extended longevity. Currently, UHPC is employed around the globe alongside recently published practice guidelines. Although numerous research projects were undertaken to examine the behavior of UHPC-incorporated structures, there still are many gaps to be explored. Of interest are the development of robust and reliable mixtures and their application to primary load-bearing members for bridges and buildings, including various site demonstration projects that would promote the use of this leading-edge construction material. This Special Publication (SP) contains nine papers selected from three technical sessions held in the ACI Spring Convention in March 2022. All manuscripts were reviewed by at least two experts in accordance with the ACI publication policy. The Editors wish to thank all contributing authors and anonymous reviewers for their rigorous efforts. The Editors also gratefully acknowledge Ms. Barbara Coleman at ACI for her knowledgeable guidance. Yail J. Kim, Steven Nolan, and Antonio Nanni Editors University of Colorado Denver Florida Department of Transportation University of Miami
DOI:
10.14359/51742116
SP-363-5
July 1, 2024
Philip Loh, Sri Sritharan, Kam Ng, Emad Booya, and Don Gardonio
Through a Change Proposal by Facca Incorporated, the Ontario Ministry of Transportation (MTO) approved the replacement of the as-tendered steel H-piles by newly designed prestressed/precast Ultra-High-Performance Concrete (UHPC) piles for supporting the west abutment of the Lily River Detour Bridge. The 300 mm (~12”) deep UHPC piles were designed and installed at the west abutment based on the previous successful development and testing of a tapered H-shaped pile at Iowa State University. The east abutment, as tendered, was designed to be supported by six steel H-shaped battered piles driven to bedrock. For the west abutment, six UHPC piles were produced and installed using the same batter. Since the site contained occasional boulders and the design intent to drive the piles to bedrock, the UHPC piles were fitted with steel shoes for the first time. All piles were successfully installed to reach the targeted load bearing capacities. After the replacement bridge was constructed, the detour bridge was removed and the UHPC piles were extracted to examine the conditions of the piles. This presentation will provide details of the innovative design of the piles, fabrication and driving of the piles, and lessons learned from analyzing the driving data and removal of the piles. Fellowship and Scholarship recipients. With the help of generous donors from the concrete community, the ACI Foundation awards high-potential undergraduate and graduate students in engineering, construction management, and other appropriate curricula.
10.14359/51742108
SP-362_78
June 18, 2024
Yeakleang Muy, Luc Courard, Xavier Garnavault, David Bulteel, Sébastien Rémond, Maria Taleb, and Julien Hubert
362
This study focuses on evaluating the mechanical, microstructural, and durability properties of 3D printing mortar (3DPM), with a specific emphasis on the influence of incorporating recycled fine aggregates (RFA). These RFA are produced from construction and demolition waste (C&DW) in Belgium and are sieved to a maximum particle size of 2 mm [0.08 in]. Cast and printed samples of mortar containing 100% RFA, with a sand-to-cement ratio of approximately 1:1 and a water-to-cement ratio of 0.29, were subjected to mechanical tests, including flexural, compressive, and tensile strength, at 2, 7, 28, and 56 days. The possible anisotropic behavior of the printed material was also investigated. The results show that using RFA does not significantly affect the mechanical properties of the mortar, and some anisotropic behavior was observed based on the compression test results. The end goal of the project is to print non-reinforced urban furniture; in order to assess its durability, only freezing and thawing (F-T) behavior was investigated. The F-T behavior was analyzed based on the quantity of spalling particles after 7, 14, 28, 56, and 91 F-T cycles. The results show that up to 91 F-T cycles, no significant surface damage occurred.
This study focuses on evaluating the mechanical, microstructural, and durability properties of 3D printing mortar (3DPM), with a specific emphasis on the influence of incorporating recycled fine aggregates (RFA). These RFA are produced from construction and demolition waste (C&DW) in Belgium and are sieved to a maximum particle size of 2 mm [0.08 in].
Cast and printed samples of mortar containing 100% RFA, with a sand-to-cement ratio of approximately 1:1 and a water-to-cement ratio of 0.29, were subjected to mechanical tests, including flexural, compressive, and tensile strength, at 2, 7, 28, and 56 days. The possible anisotropic behavior of the printed material was also investigated. The results show that using RFA does not significantly affect the mechanical properties of the mortar, and some anisotropic behavior was observed based on the compression test results. The end goal of the project is to print non-reinforced urban furniture; in order to assess its durability, only freezing and thawing (F-T) behavior was investigated. The F-T behavior was analyzed based on the quantity of spalling particles after 7, 14, 28, 56, and 91 F-T cycles. The results show that up to 91 F-T cycles, no significant surface damage occurred.
10.14359/51742028
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.