ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 1918 Abstracts search results

Document: 

SP-363-7

Date: 

July 1, 2024

Author(s):

Kusum Saini and Vasant A. Matsagar

Publication:

Symposium Papers

Volume:

363

Abstract:

Lightweight and high-performance materials have become necessary for infrastructure with advanced construction and performance requirements. One of the major challenges with structures made of these materials is their performance under natural and man-made hazards, such as wind, fire, and blast. Therefore, in this study, the performance of ultra-high-performance concrete (UHPC) and UHPC coated with foamed concrete (UHPC-Foamed) and polyurea (UHPC-Polyurea) is investigated under blast load. A finite element model is developed to assess the behavior of UHPC and coated UHPC panels under far-field and near-field blast scenarios. The constitutive behaviors of UHPC and foamed concrete are considered using the concrete damage plasticity model with respective parameters. The polyurea is modeled as a hyperelastic material with the Mooney-Rivlin model. Moreover, the effectiveness of the additional coatings, i.e., foamed concrete and polyurea, on the blast resistance of each panel is presented. The finding of the study shows that both foamed concrete and polyurea enhance the blast resistance of the UHPC concrete panels. Moreover, a comparison between the blast resistance of UHPC-Foamed and UHPC-Polyurea is conducted under far-field and near-field blast scenarios. Also, the effectiveness of foamed concrete and polyurea coatings with different thicknesses to UHPC panels is assessed under both blast scenarios.

DOI:

10.14359/51742110


Document: 

SP-363-6

Date: 

July 1, 2024

Author(s):

Kuo-Wei Wen, Manuel Bermudez, and Chung-Chan Hung

Publication:

Symposium Papers

Volume:

363

Abstract:

Ultra-high-performance concrete (UHPC) features tensile strain-hardening behavior and a high compressive strength. Existing studies on the shear behavior of UHPC structural members have been focused on prestressed UHPC girders. More experimental data of the shear behavior of non-prestressed UHPC beams are necessary to quantify the safety margin of shear designs for structures. Moreover, while the UHPC members in most studies did not contain coarse aggregate to strengthen their microstructure, the inclusion of coarse aggregate has been shown to substantially reduce the autogenous shrinkage and enhance the elastic modulus for UHPC materials, which is beneficial for structural applications of UHPC. This study experimentally investigated the shear failure behavior of eighteen non-prestressed rectangular UHPC beams. The experimental variables included the volume fraction of fibers, shear span-to-depth ratio of the beams, and coarse aggregate. The detailed shear failure responses of the UHPC beams were discussed in terms of the damage pattern, shear modulus, shear strength, shear strain, and strain energy. The test results showed that the inclusion of coarse aggregate increased the beam shear strength, and its enhancement became more significant with a higher volume fraction of fibers and a lower shear span-to-depth ratio of the beam. In addition to the experimental investigation, a shear strength model for non-prestressed rectangular UHPC beams that accounts for the interactive effect of the key design parameters was developed. An experimental database of the shear strength of the UHPC beams in existing studies was established to assess the performance of the proposed model. It was shown that the proposed model reasonably predicted the shear strength of the UHPC beams in the database with a higher accuracy and lower scatter compared to the results of existing models.

DOI:

10.14359/51742109


Document: 

SP-363-1

Date: 

July 1, 2024

Author(s):

Raid S. Alrashidi, Rami Zamzami, Megan S. Voss, Daniel J. Alabi, Christopher C. Ferraro, H. R. Hamilton, Joel B. Harley, and Kyle A. Riding

Publication:

Symposium Papers

Volume:

363

Abstract:

The presence of chloride ions is one of the most widespread causes of corrosion initiation in reinforcing steel in concrete. Trace chlorides present in cementitious materials or admixtures typically result in very low fresh chloride contents in normal-strength concrete that do not present a danger of corrosion. UHPC mixture designs, however, use much higher dosages of cementitious materials and admixtures that can result in non-negligible total fresh chloride contents. These high chloride values are likely to occur more frequently in the future as more UHPC mixtures are made with locally available materials and alternative cementitious materials and may result in concrete mixtures failing to meet specifications for fresh chloride content limits that are based on mixture proportions used in normal-strength concrete mixtures. UHPC and normal concrete samples were made without fibers and with increasing levels of internally admixed chlorides for four different levels of strength to determine chloride thresholds for internally added chlorides. The chloride threshold for fresh concrete was measured using a slightly modified version of the accelerated test EN 480-14. The water-soluble and acid-soluble chloride ion content of UHPC mixtures tested were measured according to ASTM C1218 and Florida Method FM 5-516 to determine the bound chlorides and fresh chloride limits for corrosion. The results demonstrate that the UHPC had ~ 25% higher chloride threshold than the control mixture when measured as an absolute content per unit volume of concrete. When the UHPC chloride content is normalized by mass of cementitious material, it was found that the amount needed to initiate corrosion may be lower than fresh chloride limits given in ACI-318 and ACI 222. Therefore, the ACI-318 water-soluble chloride limits as a % by mass of cementitious materials were found to be non-conservative for the two of the UHPC mixtures tested and should be re-examined for UHPC.

DOI:

10.14359/51742104


Document: 

SP-362

Date: 

June 30, 2024

Author(s):

ACI, RILEM, Université de Sherbrooke, Université Toulouse III, CRIB, LMDC Toulouse

Publication:

Symposium Papers

Volume:

362

Abstract:

In July of 1983, the Canada Centre for Mineral and Energy Technology of Natural Resources Canada (CANMET), in association with the American Concrete Institute (ACI) and the U.S. Army Corps of Engineers, sponsored a 5-day international conference in Montebello, Quebec, Canada, on the use of fly ash, silica fume, slag, and other mineral by-products in concrete. The conference brought together representatives from industry, academia, and government agencies to present the latest information on these materials and to explore new areas of needed research. Since then, eight other such conferences have been held around the world (Madrid, Trondheim, Istanbul, Milwaukee, Bangkok, Madras, Las Vegas, and Warsaw). The 2007 Warsaw Conference was the last in this series. In 2017, due to the renewed interest in alternative and sustainable binders and supplementary cementitious materials, a new series was launched by Sherbrooke University (Professor Arezki Tagnit-Hamou), American Concrete Institute (ACI), and the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM)—in association with a number of other organizations in Canada, the United States, and the Caribbean—sponsored the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2017). The conference was held October 2-4, 2017, in Montréal, Canada. The conference proceedings, containing 50 reviewed papers from more than 33 countries, were published as ACI SP-320. In 2021, UdeS, ACI, and RILEM, in association with Université de Toulouse and a number of other organizations in Canada, the United States, and Europe, sponsored the 11th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2021). The conference was scheduled to take place in Toulouse, but due to COVID, it was held online June 7-10, 2021. The conference proceedings, containing 53 reviewed papers from more than 21 countries, were published as ACI SP-349. In 2024, the conference was finally held in-person in Toulouse from June 23 to 26, 2024, with the support of UdeS, ACI, and RILEM in association with Université de Toulouse (Martin Cyr) and a number of other organizations in Canada, the United States, and Europe. The purpose of this international conference was to present the latest scientific and technical information in the field of supplementary cementitious materials and novel binders for use in concrete. The new aspect of this conference is to highlight advances in the field of alternative and sustainable binders and supplementary cementitious materials for the transition to low carbon concrete. The conference proceedings, containing 78 reviewed papers from more than 25 countries, have been published as ACI SP-362. Thanks are extended to the members of the International Scientific Committee who reviewed the papers. The cooperation of the authors in accepting the reviewers’ suggestions and revising their manuscripts accordingly is greatly appreciated. The involvement of the steering committee and the organizing committee is gratefully acknowledged. Special thanks go to Chantal Brien (Université de Sherbrooke) for the administrative work associated with the conference and for processing the manuscripts for both the ACI proceedings and the supplementary volume. Arezki Tagnit Hamou, Editor Chairman, 12th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2024). Sherbrooke, Canada, 2024

DOI:

10.14359/51742032


Document: 

SP-362_76

Date: 

June 18, 2024

Author(s):

Wena de Nazaré do Rosario Martel, Josée Duchesne, and Benoît Fournier

Publication:

Symposium Papers

Volume:

362

Abstract:

Due to its predominant soda-lime composition, most post-consumer glass processed by recycling facilities would be classified as high-alkali pozzolanic glass powder (GP). In cementitious matrices, the intrinsic alkaline pore solution induces the dissolution of both silica and alkali ions. Therefore, the GP can potentially induce two similar reactions in concrete: either a deleterious alkali-silica reaction or a pozzolanic reaction. The equilibrium of the pore solution will determine which reaction will prevail in the long term. To understand the chemical stability of GP in a cementitious system, the evolution of the solubility of key elements in an alkali-rich synthetic pore solution was studied as a function of reaction time, particle size, presence of Ca(OH)2 and CaCO3, and binder/solution ratio (B/S). The solution was based on the R³ method, which consists mainly of lab-grade chemicals such as KOH and K2SO4. Although the chemical equilibrium seems to be fully reached in the first hours of hydration, the main products, such as C-S-H, are unstable because the alkali leaching/uptake in the C-S-H chains is dynamically evolving. The experiments show that both C-S-H precipitation and alkali leaching rates increase with increasing B/S ratio and decreasing particle size, and are directly related to the presence of calcium in the solution.

DOI:

10.14359/51742026


12345...>>

Results Per Page