Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 222 Abstracts search results
Document:
SP-362_66
Date:
June 18, 2024
Author(s):
M.T. de Grazia, L.F.M. Sanchez, and A. Leemann
Publication:
Symposium Papers
Volume:
362
Abstract:
Using particle packing models (PPMs) in combination with limestone fillers has been shown to be effective in proportioning eco-efficient concrete mixtures with reduced Portland cement content, resulting in suitable performance in fresh and short-term hardened states. However, the decrease in Portland cement and increase in limestone fillers may lower the pH of concrete, raising concerns about durability and long-term performance, potentially leading to increased corrosion of steel reinforcement in the presence of carbonation or chlorides. In this study, the performance of three eco-efficient concrete mixtures with varying cement (250, 200, and 150 kg/m3) and inert filler contents is evaluated against accelerated chloride exposure. The findings highlight the influence of the mixture proportioning and water-to-cement ratio on the resistance to chloride ingress. Ultimately, it is verified that the distance between cement particles is a major contribution towards chloride ingress.
DOI:
10.14359/51742016
SP-355_18
July 1, 2022
Renee T. Rios, Francesca Lolli, Katelynn Schoenrock, Kimberly E. Kurtis
355
Performance-based specifications (PBS) may increase concrete quality and sustainability by facilitating innovations in material selection and proportioning. This is particularly relevant now with increased interest in a broader set of minimally processed minerals for use as supplementary cementitious materials (SCMs) or fillers; these are often industrial and agricultural byproducts and with limited performance history in concrete. This study compares traditional largely prescriptive concrete design, following practices currently allowed by the Georgia Department of Transportation, with three new concrete designs which do not comply with current specifications but offer increased sustainability. Three metrics are assessed for each mixture: the associated cradle-to-gate CO2 emissions, a metric that incorporates the environmental burden of concrete, compressive strength at 28 days, and surface resistivity measurements taken weekly from 28 to 56 days. A framework is proposed to statistically analyze compressive strength data to pre-qualify mix designs, which can be broadly applied to reduce time-consuming iterative testing and to help meet sustainable development goals. The aim is to foster innovation in material use and mixture design towards an increased durability and performance, while reducing environmental impact and minimizing risk.
10.14359/51736027
SP-349_13
April 22, 2021
Gonzalo A. Lozano Rengifo, Mayra T. de Grazia, Leandro F. M. Sanchez, and Edward G. Sherwood
349
Reducing Normal Portland Cement (NPC) has been a major concern of concrete industry and research community over the last 2-3 decades. As much as 8% of the global CO2 emissions stem from clinker production. Hence, a wide number of research projects have been focusing on reducing NPC in cementitious materials using numerous strategies such as the use of supplementary cementing materials (SMC’s), limestone fillers (LF) and/or advanced mixproportioning techniques. Yet, the impact of these procedures on the overall behaviour of materials with low NPC content, especially in the fresh state and long-term durability, is still not fully understood. This work aims to understand the influence of the distance between the fine particles, the so-called Inter-Particle Separation (IPS), on the fresh state behaviour of cement-base pastes designed through the use of Particle Packing Models and incorporating LF. Evaluations on the fresh (i.e. rheological behaviour and setting time) and hardened states (compressive strength) were conducted in all mixtures. Results show that IPS directly correlates with the viscosity of cementbase pastes for all shear rates appraised. Moreover, the use of LF increases the hydration rate of NPC pastes. Finally, it is clear that the water-to-cement ratio keeps being the main factor controlling the compressive strength of cement pastes with reduced NPC content and high levels of LF replacement.
10.14359/51732746
SP326-05
August 10, 2018
Ravindra Gettu, Radhakrishna G. Pillai, Jyotiprakash Meena, Anusha S. Basavaraj, Manu Santhanam, and B.S. Dhanya
326
The mixture proportioning of concrete for sustainability should consider four aspects, without sacrificing affordability: the lowering of the carbon dioxide emissions; the minimization of raw materials required; reduction of energy demand during manufacturing and construction; and the longevity of the structure or other applications. Taking a set of concretes with different binders, including ordinary portland cement (OPC), fly ash (FA) and ground granulated blast furnace slag (GGBS), sustainability is assessed using different types of indicators including those that take into account the binder and clinker content, compressive strength, carbon footprint and energy demand. A new set of indicators called A-indices has been proposed for combining the influence of carbon dioxide emissions obtained from life cycle assessment (LCA) and durability parameter that relate to the service life of a structure. Here, this concept is illustrated by obtaining a parameter based on the chloride migration coefficient of the concrete. It is proposed that the decision-making process for sustainable concrete be made by minimizing both the A-index and the energy intensity, defined as the energy demand for a unit volume of concrete and unit performance parameter, such as 1 MPa of 1-year compressive strength. The best concretes considered here come out as those with ternary binders having 40% of the OPC replaced by a combination of GGBS and FA.
10.14359/51710975
SP326-40
A. Ghani Razaqpur and Gholamreza Fathifazl
Macro-mechanics is a rational basis for determining some of the mechanical properties of concrete based on its composition. In this investigation, well known macro-mechanical models for elastic modulus of Natural Aggregate Concrete (NAC) are adapted and generalized to make them applicable to Recycled Aggregate Concrete (RAC). Two sets of models are presented: (1) Phase-Based Models: where the elastic modulus is expressed in terms of the volume fractions and elastic moduli of relevant concrete mixture constituents, (2) Bulk-Based Models: where the elastic modulus is expressed in terms of the total mortar and aggregate volumes and elastic moduli of two limiting mixes, one with 0% and the other with 100% replacement of coarse natural aggregate by RCA. The detailed procedures are presented and the derived expressions for evaluating the elastic modulus are shown. To validate the proposed models, results of an experimental program involving many NAC and RAC mixes are used, with the mixes proportioned by either the traditional method of the American Concrete Institute (ACI) or by the Equivalent Mortar Volume (EMV) method developed by the writers. Reasonable agreement is observed between the computed and corresponding experimentally measured elastic moduli, with maximum difference of 12%.
10.14359/51711022
Results Per Page 5 10 15 20 25 50 100