International Concrete Abstracts Portal

Showing 1-5 of 33 Abstracts search results

Document: 

CI4603Huso

Date: 

March 1, 2024

Author(s):

Deborah R. Huso

Publication:

Concrete International

Volume:

46

Issue:

3

Abstract:

The Arkansas Museum of Fine Arts in Little Rock, AR, USA, has a new folded plate concrete roofline which became the museum's signature architectural element. Built of thin concrete plates arranged in angular folds, the roof covers a series of pavilions branching out like flower stems-creating a glassed-in gathering space for visitors on one end and a dining terrace on the other.


Document: 

SP-346_08

Date: 

January 1, 2021

Author(s):

Joseph Losaria, Steven Nolan, Andra Diggs II, and David Hartman

Publication:

Symposium Papers

Volume:

346

Abstract:

This case study highlights the use of Fiber Reinforced Polymer (FRP) materials on the US 41 Highway Bridge over North Creek in Sarasota County near the Florida Gulf Coast. Design and construction involved the use of Glass-FRP (GFRP) reinforcement on the cast-in-place (CIP) concrete flat slab superstructure, Carbon-FRP (CFRP) prestressing strands on the concrete piles, and GFRP reinforced precast panels for the substructure combining a bridge bearing abutment and retaining wall system. The application of FRP prestressing and reinforcing is promoted by the Florida Department of Transportation (FDOT) under their Transportation Innovation Challenge initiative. Soldier-pile retaining walls are a commonly used system in southeastern US coastal states, but the incorporation of innovative materials such as CFRP-prestressing for piles and GFRP-reinforcing for concrete panels is not yet widespread. Comparison of lateral stability results of this wall system during construction and in the final condition is discussed. In addition, to describing the preferred FRP-PC/RC solution adopted for this project, a comparison is provided to a recently completed adjacent bridge that utilized a conventional carbon-steel PC soldier-pile and RC precast panel wall system. A further comparison is presented for the design and cost of the wall system based on the project design criteria (ACI 440.1R, ACI 440.4R, and 2009 AASHTO LRFD Bridge Design Guide Specifications for GFRPReinforced Concrete, 1st Edition) with the refinements and savings possible under the newer editions. Finally, the life-cycle cost, durability and environmental benefits from the use of the innovative CFRP and GFRP reinforcing systems in this type of traditional wall system, are identified for typical urban coastal areas with extremely aggressive conditions, congested access, and challenging environmental constraints.

DOI:

10.14359/51730497


Document: 

SP313

Date: 

March 6, 2017

Publication:

Symposium Papers

Volume:

313

Abstract:

Editors: Kyuichi Maruyama and Andrew W. Taylor

The First American Concrete Institute (ACI) and Japan Concrete Institute (JCI) joint seminar was conceived as a vehicle for promoting collaboration and cooperation between two organizations that are dedicated to the global advancement of concrete technology. In September 2012 ACI President James Wight, and ACI Executive Vice President Ronald Burg, visited the headquarters of JCI and discussed ways to promote collaboration between ACI and JCI with JCI President Taketo Uomoto and JCI Executive Directors. A joint ACI and JCI technical seminar was proposed as a way to share knowledge and foster collaboration between the two organizations. Subsequent discussions between Ronald Burg and JCI Executive Director Kyuichi Maruyama led to a joint seminar planning meeting, held at the ACI convention in Minneapolis, Minnesota, in April 2013.

This volume contains the technical papers presented at the First ACI & JCI Joint Seminar, held in Waimea, Island of Hawaii, Hawaii, July 16 to 18, 2014. The theme of the joint seminar was “Design of Concrete Structures Against Earthquake and Tsunami Disasters.” Five papers were presented by authors from ACI, and five papers from JCI. Three papers are related to tsunami loads and structural design requirements, and seven are related to seismic analysis and design.

The three papers on tsunami effects included a summary by Nakano of structural design requirements for tsunami evacuation buildings in Japan; an overview by Chock of the new tsunami load and design requirements in the United States; and a study by Maruyama et al. on the evaluation of tsunami forces acting on bridge girders.

The seven papers on seismic effects addressed topics ranging from seismic design standards to innovative methods of construction for seismic retrofit. Parra-Montesinos et al. presented the results of experiments on fiber-reinforced coupling beams, as well as design guidelines. Teshigawara discussed JCI contributions to the ISO Standard for seismic evaluation and retrofit of existing concrete structures. A summary of a project on the use of high-strength reinforcement for seismic design was presented by Kelly et al., including findings that are based on extensive prior research on high-strength reinforcement in Japan. Shiohara described the results of a study that supports the new Architectural Institute of Japan (AIJ) Standard for Seismic Capacity Calculation, with a focus on beam-column joints and collapse simulation. Matamoros presented a study of factors that affect drift ratio at axial failure of nonductile reinforced concrete buildings. A study of the seismic response of reinforced concrete bridge piers, including the effects of interaction between piles and soil, was presented by Maki et al. Finally, French et al. discussed an overview of lessons learned from laboratory testing of reinforced concrete shear walls.

The day after the joint seminar a meeting was held between ACI and JCI officials to discuss future collaboration and joint seminars. Representing ACI were President William E. Rushing, and the ACI Executive Vice President, Ronald Burg. Representing JCI were President Hirozo Mihashi, and Chair of the JCI Committee on JCI-ACI Collaboration, Kyuichi Maruyama. It was resolved to hold a second joint seminar, to be hosted by JCI in Tokyo, in conjunction with the 50th anniversary celebrations of the founding of JCI on July 13, 2015. In addition, subsequent discussions between ACI and JCI led to plans for the third joint seminar, to be hosted by ACI at the ACI Convention in Anaheim, California, in October 2017.

It is hoped that this collection of papers will serve to advance the state of analysis and design of concrete structures against earthquakes and tsunamis in both the United States and Japan, and that it will serve as a model for future collaboration between ACI and JCI.

Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-313

DOI:

10.14359/51689771


Document: 

SP310

Date: 

March 1, 2017

Publication:

Symposium Papers

Volume:

310

Abstract:

Editor: Bruno Massicotte, Jean-Philippe Charron, Gilvanni Plizzari, and Barzin Mosasher

The FRC-2014 Workshop, Fibre-reinforced concrete: From design to structural applications, was the first ever ACI-fib joint technical event. The workshop, held at Polytechnique Montreal, Canada, on July 24 and 25, 2014, was attended by 116 participants from 25 countries and four continents.

The first international FRC workshop was held in Bergamo, Italy, in 2004. At that time, the lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. Ten years after Bergamo, many of the objectives identified at that time have been achieved. The use of fibre-reinforced concrete (FRC) for designing structural members in bending and shear has recently been addressed in the fib Model Code for Concrete Structures 2010. Steel-fibre-reinforced concrete (SFRC) has also been used structurally in several building and bridge projects in Europe and North America. SFRC has been widely used in segmental tunnel linings all over the world. Members of ACI 544 and fib TG 4.1 have been involved in writing code-based specifications for the design of FRC structural members.

Although fibres have been used by the construction industry for several decades, their use in structural applications is still very modest if one considers the gigantic potential of concrete structures around the world and the benefits expected of their mechanical behaviour and durability. However, recent technological developments and large scale applications have demonstrated that FRC has reached a level of maturity such that these innovative materials can be used by engineers with confidence. From that perspective, the aim of the FRC 2014 workshop was to provide the state-of-the-art on the recent progress attained in terms of specifications and actual applications. Presentations covered several design guidelines adopted worldwide illustrating the progress made in the last ten years, and also a wide spectrum of FRC applications such as beams, elevated floors, tunnel linings, slabs, pavements, precast elements, bridge elements, and many others.

More than fifty papers were presented at the workshop, from which 44 were selected for this joint ACI-fib publication. The papers are organised into six themes:

• design guidelines and specifications,

• material properties for design,

• behaviour and design of beams and columns,

• behaviour and design of slabs and other structures,

• behaviour and design of foundations and underground components, and finally,

• applications in structure and underground construction projects.

The papers cover a wide range of applications and illustrate the maturity of FRC as the choice material for improving the serviceability, sustainability, and performance of concrete structures. The workshop chairs would like to express their sincere recognition to all authors and reviewers who contributed to the quality of the document. Special thanks to both ACI and fib officers and staff who supported the organisation of the workshop, editorial support, and dissemination of the workshop proceeding as an ACI Symposium Publication and an fib Bulletin. While significant progress has been made in the introduction of FRC in codes and structures, the current accomplishment should be viewed as the beginning, and significant follow up work is still needed. Indeed, introducing new technologies and new materials in structural applications brings technical and scientific challenges and responsibilities. The necessity to achieve the objectives set worldwide for sustainable development requires that 21st century concrete structures meet higher performances than those of the previous one, a role that FRC can definitely help achieve. It is the responsibility of all actors to move forward in that direction.

The recently published codes and design guidelines, available worldwide, constitute a first step into the implementation of FRC in the construction industry. However, before the structural use of FRC becomes a common practice, several benchmarks need to be accomplished. The numerous factors that still inhibit the use of FRC in structural applications should be viewed as challenges that could only be solved through a joint effort of all key players. Professor Sidney Mindess, a pioneer of FRC research, indicated in his opening speech at the Montreal Workshop four challenges to increase the structural use of FRC: education and training, performance specifications, more appropriate testing methods, and comprehensive research programs focused on the combined use of FRC and continuous reinforcement. Without claiming to provide an exhaustive list of actions, the following presents some challenges that need to be addressed by the scientific community, fibre producers, structural design community, construction industry, and stakeholders to achieve the objective of building more durable concrete structures. These challenges are inspired by Professor Mindess’ remarks.

The scientific community should contribute to the elimination of artificial divisions between different types of FRC based on the compressive strength and type of fibres. They should put the emphasis on the benefits brought by fibres on the performance of concrete structures and present FRC as a continuum of materials with different characteristics and performances. Approaching research on FRC more holistically with the emphasis on applications is essential for the sound development of the scientific knowledge. Fibre producers would certainly be the first ones to benefit from a wider use of fibre concrete. Considering that about 1% of the concrete used worldwide contains fibres, they should combine their efforts for developing new applications and expanding the spectrum of the conventional uses, rather than working against each other for the same market.

Addressing the replacement of alternative reinforcement solutions should evolve toward adopting a strategy based on the vision that fibres should be used along with other types of reinforcement to make better constructions at both service and ultimate limit states. The structural design community has always adopted conservatism that is justified in many instances for safety and professional responsibility. The evidence of enhanced performances of FRC structures and the need to build more durable and safer structures only justifies a more extensive use of FRC. Being at the decision central point, designers should be more proactive in proposing the implementation of FRC in structures. They should contribute to the writing of design guidelines, they should ask to get appropriate training, and they should promote the improvement of the expertise level of the engineering profession.

Being driven by the necessity of profit, the construction industry has always been resistant to changes unless motivated by economic advantages. Problems associated with the use of FRC, especially at high dosages, have often and justifiably discouraged their broader use. Today's technological knowhow and availability of products are such that past technical problems have been overcome. Changing traditional ways of building with FRC will need some effort and modification of the current practice. However, members of the construction industry with the vision of tomorrow's concrete structures will make the appropriate changes because survival often requires evolution. A better and more modern image of the construction industry would certainly be beneficial to all.

Stakeholders with long-term vision will implement the needed change, as clear evidence of better, safer, and more durable structures with FRC is needed. Combined with the maturity of the scientific knowledge on FRC, stakeholders can now require a wider use of FRC. When only short-term economic considerations prevail, FRC is not always competitive. However, when better service performances, higher longevity and enhanced quality become important issues, FRC utilisation often becomes inevitable. Therefore, those who decide the quality of concrete should be able to defend their choice to those they represent. The onus is on them to justify not using FRC considering all benefits brought by their appropriate use in structures.

Not all challenges have been discussed here and several technical and scientific issues still have to be resolved. Adding fibres into a concrete mix is not magical and the challenges remain high. Despite the obstacles that need to be crossed and the long journey ahead, the path appears more clearly. It requires more research, open minds, visions and close collaboration between all actors. Forums such as the FRC workshops are essential events that bring together participants of various technical geographical origin. They are one component of the collaborative effort that is needed to achieve the objective of building better structures. FRC is a remarkable material, and so far we have only scratched the surface of the contributions it can make to structural concrete design. Although fibres themselves are relatively expensive, they lead to real economic benefits in the design of concrete structures, and can expand the range of structures that can be constructed using concrete. It is hoped that some of the suggestions presented above can lead to the more rapid introduction of this material into everyday engineering practice.


Document: 

SP305-07

Date: 

September 1, 2015

Author(s):

Carolina Di Biase

Publication:

Symposium Papers

Volume:

305

Abstract:

In many countries, structures in reinforced concrete “of historical interest” are covered by preservation legislation. In striving to restore them, scholars make use of knowledge accumulated over time. Less well known is the technological research that was part of the production and use of cements and concrete mixtures for reinforced concretes, whose durability has always been a prime concern. Historic works bear witness to their ability to last over time and to the ways in which structures and materials age and deteriorate, thus providing evidence as to the validity of the expectations of durability which existed when the work was designed. The systematic collation of data relating to such artefacts and the repairs they have undergone would be of great use (e.g. with regard to the components used in the original work and in the repairs). Furthermore, collaboration with manufacturing companies and research laboratories should allow us to make use of recently-developed prepacked mortars and concrete in new repair work, assessing their compatibility with old materials and monitoring their performance over time. The resultant database and experimental results would provide clues useful in moving beyond current rudimentary practices, laying the basis for a shift from “concrete repair to concrete conservation”.

DOI:

10.14359/51688567


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer