ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 1017 Abstracts search results
Document:
SP364_5
Date:
December 1, 2024
Author(s):
Michael Pickett, Daniel Richey, Chris Moore, Joshua Umphrey, and Gordon Borne
Publication:
Symposium Papers
Volume:
364
Abstract:
Reinforced concrete sections have typically been the most used material for hardened protective construction due to their mass and the ductility provided by the reinforcement. The additional mass of these sections reduces deflections and increases dampening, which reduces vibrations. Even for the occasional occurrence of hardened steel structures, the foundation is comprised of reinforced concrete. Reinforced concrete structures are hardened for a multitude of reasons. The most common include antiterrorism, force protection, equivalent protection for quantity distance arc violations, personnel protection, prevention of prompt propagation, asset protection, and elastic response during repeated intentional detonations. Many of the structures in the United States (US) used by the Department of Defense (DoD), to accommodate a rapid increase in production and storage of explosives were built during World War II (1941-1945). Facilities used for explosives production, maintenance, research and development (R&D), demolition, testing, and training are commonly referred to as Explosives Operating Locations (EOLs). This puts the average age of many of these facilities close to 80 years-old, which is past their originally intended service life. This paper presents a structural health and visual inspection (SHVI) technique developed by the U.S. Army Corps of Engineers (USACE) Facilities Explosives Safety Mandatory Center of Expertise (FES MCX), the University of Oklahoma, and the Engineering Research and Development Center (ERDC) Geotechnical and Structures Laboratory (GSL) for the inspection of reinforced concrete Explosives Operations Location (EOL) facilities and live-fire training facilities [9]. This inspection process has been utilized to inspect over 1500 structures across multiple countries over the last decade and aid DoD installations in planning and budgeting for necessary repairs and future recapitalization priorities. This work does not include application to anti-terrorism or force protection in hardened structures for conventional weapon effects. This process has also been modified for use in live-fire training operations in concrete facilities and coupled with analyses to determine facility adequacy for explosives operations with desired charge weights, based on the given facility’s current structural health rating and its analyzed ability to remain elastic during repeated intentional detonations. The FES MCX partners with ERDC for concrete coring, materials analysis, and testing of samples to determine the estimated remaining service life of concrete structures based on the carbonation front of cored samples determined by the carbonation tests in relationship to the steel reinforcement. Examples of historical application will be given, and details provided on how these methods can lead to improved life-cycle cost for concrete structures and paired with design development criteria for optimal results.
DOI:
10.14359/51745457
SP364_6
Josh Umphrey, Chris Moore, Daniel Richey, Gordon Borne, and Michael Pickett
Reinforced concrete sections have typically been the most used material for hardened protective construction due to their mass and the ductility provided by the reinforcement. The additional mass of these sections reduces deflections and increases dampening, which reduces vibrations. Even for the occasional occurrence of hardened steel structures, the foundation is comprised of reinforced concrete. Reinforced concrete structures are hardened for a multitude of reasons. Some of the most common include antiterrorism, force protection, equivalent protection for quantity distance arc violations, personnel protection, prevention of prompt propagation, asset protection, and elastic response during repeated detonations. Many of the structures used in the Department of Defense (DoD), for these purposes, were built in the United States (US) during the World War II era (1941-1945) for a rapid increase in production and storage of explosives. This puts the average age of many of these facilities at close to 80 years-old, which is past their originally intended service life. This paper presents a structural health and visual inspection technique developed by the U.S. Army Corps of Engineers (USACE) Engineering and Support Center Huntsville (CEHNC) Facilities Explosives Safety Mandatory Center of Expertise (FES MCX) and the Engineering Research and Development Center (ERDC) Geotechnical and Structures Laboratory (GSL) for the inspection of reinforced concrete earth covered magazines (ECMs) [9]. This inspection process has been utilized to inspect over 1500 earth covered magazines across multiple countries over the last decade and aid DoD installations in planning and budgeting for concrete repairs and ECM replacements. The CEHNC FES MCX partners with ERDC for concrete coring and testing of samples to determine the estimated remaining service life of concrete structures based on the carbonation front of cored samples determined by the carbonation tests in relationship to the steel reinforcement. Examples of historical application will be given, and details provided on how these methods can lead to improved life-cycle cost and decision making.
10.14359/51745458
SP-362_77
June 18, 2024
Renata Lorenzoni, Alexander Mezhov, Tobias Fritsch, Wolfram Schmidt, Sabine Kruschwitz
362
The use of biochar as a supplementary cementitious material is proposed to reduce global greenhouse gas emissions. Since biochar is non-reactive, and has a low density and complex porosity, its incorporation into cementitious materials results in microstructural changes and consequently affects the mechanical response. This work advances the mechanical response understanding of Portland cement composites with 0, 5, and 25 volume percent (vol%) of cement replaced with biochar by using in-situ computed tomography, correlating with the microstructural changes analyzed by HFC, gas sorption, MIP, gas sorption, and NMR. The results highlight the influence of the mesoscale structure on mechanical responses and relate the lack of loss of mechanical strength at 5 vol% replacement to the compensation of decreasing larger pores with biochar addition. At 25 vol% replacement, the number of weakened zones in the paste due to biochar overcompensates the positive effect of the reduction in larger pores, resulting in a loss of mechanical properties. Hence, small amounts of biochar can enhance the microstructure, but the reduction of the carbon footprint is limited.
10.14359/51742027
SP-362_65
Kwangwoo Wi, Oguzhan Sahin, Kejin Wang, Yunsu Lee
The management of municipal solid waste incineration fly ash (MSWI FA) has become a critical issue as its generation increases rapidly along with the global population growth. In this study, MSWI FA was treated via water-washing, and then the untreated and water-treated MSWI FAs (RFA and WFA) were blended with mainstream supplementary cementitious materials (SCMs), including ground granulated blast-furnace slag (GS), silica fume (SF), and limestone powder (LS). The MSWI FASCMblends were used as a cement replacement in a mortar. The content of MSWI FAs was set at 10% (by weight of binder) for all mortar mixtures. The content of GS and LS was also set at 10%, while the SF content was 2.5%. Flowability, setting time, isothermal calorimetry, compressive strength, and free-drying shrinkage tests were performed. The results showed that mortars containing raw (untreated) fly ash (RFA) had reduced strength, whereas mortars containing water-treated fly ash (WFA) displayed comparable or even higher strength than the control mortar (made with 100% cement) after 28 days. While mortars containing RFA showed increased drying shrinkage, mortars containing WFA exhibited diminutive or no increase in drying shrinkage when compared to the control mortar. Based on the test results, the mixture with a cement:WFA:GS ratio of 80:10:10 was the optimal binder for concrete applications.
10.14359/51742015
SP-362_63
June 17, 2024
Victor Brial, Laurent Birry, and Claudiane Ouellet-Plamondon
Approximately 22 kg of spent pot lining is generated (SPL) per ton of aluminum produced by electrolytic cells. Untreated SPL is classified as hazardous industrial waste due to its hydroreactive nature and the presence of leachable cyanide and fluoride compounds. After treatment with the Low Caustic Leaching and Liming (LCL&L) industrial process, the refractory portion of the SPL is transformed into an inert material called LCLL. This project analyzed the use of LCLL as a cement binder. The reactivity of LCLL was studied using the compressive strength activity index, and RILEM R3 tests. The results showed that LCLL is composed of stable crystalline phases such as corundum, albite, and nepheline, and contains graphite. The improvement of LCLL reactivity was explored by calcination and the addition of synthetic fluorite, also from the LCL&L process. The results showed a significant improvement in reactivity with the formation of a larger amount of reactive amorphous phases with high silica and alumina content with optimum fluorite content of 10%. Calcined LCLL showed similar reactivity to fly ash, without retarding effect, with compressive strength equivalent to cement at 112 days and the formation of a new phase rich in carboaluminate.
10.14359/51742013
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.