ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 510 Abstracts search results

Document: 

SP-360_09

Date: 

March 1, 2024

Author(s):

Juan Torres Acosta and Douglas Tomlinson

Publication:

Symposium Papers

Volume:

360

Abstract:

Three bridge barriers were tested under pseudo-static loading to assess the effectiveness of a dowelling repair technique for restoring the capacity of damaged glass fiber-reinforced polymer (GFRP) reinforced systems. Barriers were 1500 mm (59.1 in.) wide and tested with an overhang of 1500 mm (59.1 in.). One barrier was entirely reinforced with steel reinforcement with the layout and geometry common in Alberta, Canada for highway applications. A second barrier replaced all steel reinforcement with GFRP bars. The third barrier simulates repair where the barrier is damaged and needs to be replaced by removing the barrier, drilling holes, and using epoxy to dowel GFRP bars into the deck. All barriers failed by concrete splitting at the barrier/deck interface which is attributed to the complex interaction of stresses from the barrier wall and overhang. The steel reinforced barrier was strongest but had slightly lower energy dissipation than the GFRP reinforced barriers. The repaired GFRP reinforced barrier had very similar response to the baseline GFRP reinforced barrier but reached a slightly larger capacity. Previously completed finite element models showed similar general responses and failure modes but larger stiffnesses and strengths than the tests which requires further investigation.

DOI:

10.14359/51740621


Document: 

SP-360_03

Date: 

March 1, 2024

Author(s):

Abubakar S. Ishaq, Maria M. Lopez, Charles E. Bakis, and Yoseok Jeong

Publication:

Symposium Papers

Volume:

360

Abstract:

This study evaluates the bond performance of concrete epoxy bonds using an image segmentation-based image processing technique. The Concrete Epoxy Interface (CEI) plays a crucial role in the structural performance of FRP-repaired concrete as it transfers stresses from the concrete to the epoxy. By employing the image segmentation technique, the performance of the CEI is assessed through the ratio of Interfacial Failure (IF) to other failure types, namely cohesive failure in Epoxy (CE) and Cohesive cracks in Concrete (CC). The effects of sustained loading duration on CEI bond performance are quantitatively analyzed using 21 single-lap shear (SLS) specimens and 28 notched 3-Point Bending (3PB) specimens. The findings highlight vital conclusions: CE is the least failure mode in SLS and 3PB specimens. In contrast, CC is the predominant failure mode, indicating the susceptibility of the concrete substrate in FRP-repaired concrete. Moreover, IF generally increases with longer sustained loading durations in 3PB specimens but decreases with increased loading duration in SLS specimens. The study also demonstrates the effectiveness of the image segmentation approach in evaluating CEI performance in 3PB specimens, where color distinguishes epoxy, FRP, and concrete substrate.

DOI:

10.14359/51740615


Document: 

SP360

Date: 

March 1, 2024

Author(s):

ACI Committee 440

Publication:

Symposium Papers

Volume:

360

Abstract:

The 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16) was organized by ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) and held on March 23 and 24, 2024, at the ACI Spring 2024 Convention in New Orleans, LA. FRPRCS-16 gathers researchers, practitioners, owners, and manufacturers from the United States and abroad, involved in the use of FRPs as reinforcement for concrete and masonry structures, both for new construction and for strengthening and rehabilitation of existing structures. FRPRCS is the longest running conference series on the application of FRP in civil construction, commencing in Vancouver, BC, in 1993. FRPRCS has been one of the two official conference series of the International Institute for FRP in Construction (IIFC) since 2018 (the other is the CICE series). These conference series rotate between Europe, Asia, and the Americas, with alternating years between CICE and FRPRCS. The ACI convention has previously cosponsored the FRPRCS symposium in Anaheim (2017), Tampa (2011), Kansas City (2005), and Baltimore (1999). This Special Publication contains a total of 52 peer-reviewed technical manuscripts from 20 different countries from around the world. Papers are organized in the following topics: (1) FRP Bond and Anchorage in Concrete Structures; (2) Strengthening of Concrete Structures using FRP Systems; (3) FRP Materials, Properties, Tests and Standards; (4) Emerging FRP Systems and Successful Project Applications; (5) FRP-Reinforced Concrete Structures; (6) Advances in FRP Applications in Masonry Structures; (7) Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures; (8) Behavior of Prestressed Concrete Structures; (9) FRP Use in column Applications; (10) Effect of Extreme Events on FRP-Reinforced/Strengthened Structures; (11) Durability of FRP Systems; and (12) Advanced Analysis of FRP Reinforced Concrete Structures. The breadth and depth of the knowledge presented in these papers is clear evidence of the maturity of the field of composite materials in civil infrastructure. The ACI Committee 440 is witness to this evolution, with its first published ACI CODE-440.11, “Building Code Requirements for Structural Concrete with Glass Fiber Reinforced Polymer (CFRP) Bars,” published in 2022. A second code document on fiber reinforced polymer for repair and rehabilitation of concrete is under development. The publication of the sixteenth volume in the symposium series could not have occurred without the support and dedication of many individuals. The editors would like to recognize the authors who diligently submitted their original papers; the reviewers, many of them members of ACI Committee 440, who provided critical review and direction to improve these papers; ACI editorial staff who guided the publication process; and the support of the American Concrete Institute (ACI) and the International Institute for FRP in Construction (IIFC) during the many months of preparation for the Symposium.

DOI:

10.14359/51740670


Document: 

SP-360_35

Date: 

March 1, 2024

Author(s):

Ramin Rameshni, PhD, P.Eng., Reza Sadjadi, PhD, P.Eng, Melanie Knowles, P.Eng., M.Eng.

Publication:

Symposium Papers

Volume:

360

Abstract:

Deterioration of concrete bridges has resulted in reduction of their service lives and increase in required maintenance which is associated with cost and inconvenience to the public. A prevalent cause of concrete bridge deterioration is corrosion which initiates by chloride ions penetration past the protecting layers and by corroding the steel reinforcement. Because corrosion in prestressed concrete members has more serious consequences than in non-prestressed reinforced concrete, it is important that bridge designers and inspectors be aware of the potential problems and environments that may cause the issue and address them as soon as they are detected. This paper discusses a case study of a highway bridge (Hyndman Bridge, Ontario) including its deterioration, causes, mitigation measures, structural evaluation and the selected repair method. The rehabilitation design is based on guidelines of the latest editions of the CHDBC and ACI 440.2R. CFRP strengthening techniques have been proposed to address the flexure and shear deficient capacity of deteriorated girders. It is concluded that by using a suitable repair methodology employing CFRP, it is possible to upgrade the bridge to comply with the latest requirements of the code and increase the service life of the structure which otherwise would have needed imminent replacement.

DOI:

10.14359/51740647


Document: 

SP358_05

Date: 

October 1, 2023

Author(s):

Murat Saatcioglu

Publication:

Symposium Papers

Volume:

358

Abstract:

Reinforced concrete bridge columns built prior to the enactment of seismic design and detailing requirements of modern codes of practice are vulnerable to seismic damage due to i) insufficient shear strength, ii) lack of concrete confinement and buckling of compression reinforcement, as well as iii) improper splicing of longitudinal reinforcement in potential plastic hinge regions. An innovative bridge retrofit technology was developed at the University of Ottawa, consisting of transverse prestressing to overcome all three deficiencies. Tests of large-scale bridge columns with circular square and rectangular cross-sections, with a shear span of either 1.5 m or 2.0 m, were tested to develop the technology. The results indicate that transverse prestressing provides clamping forces to control diagonal tension cracks, provides additional shear reinforcement and lateral concrete confinement pressure. It also improves the performance of plastic hinge regions with insufficient splice lengths by eliminating or delaying reinforcement slippage. As a result, the performance of seismically deficient columns can be improved substantially by the technique employed. Design procedures were developed to overcome all three deficiencies. The same technique is shown to be also effective as a column repair strategy for columns that have suffered from seismic shear damage.

DOI:

10.14359/51740232


12345...>>

Results Per Page