ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 917 Abstracts search results
Document:
CI4709Q&A
Date:
September 1, 2025
Publication:
Concrete International
Volume:
47
Issue:
9
Abstract:
This month’s Q&A discusses the reinforcement stiffness ratio ρne that can be used for comparing the performance of various reinforcement types in slabs-on-ground and the design approach for glass fiber-reinforced polymer reinforcement in ACI/NEx MNL-6(23) based on percent reduction in unrestrained shrinkage strain from the enhanced aggregate interlock design of ACI PRC-360-10.
DOI:
10.14359/51749147
CI4705Green
May 1, 2025
Author(s):
Emmanuel K. Attiogbe
5
Various reinforcement types can be evaluated to determine their relative performance in controlling the restrained shrinkage cracking behavior of concrete. Two sets of published test data on restrained shrinkage cracking of slabs-on-ground are analyzed, and a parameter suitable for comparing the performance of various reinforcement types is identified.
10.14359/51746777
SP364_4
December 1, 2024
Mohammad T. Nikoukalam, Shahabeddin Torabian, and Said Bolourchi
Symposium Papers
364
This research examines the hole-drilling method per ASTM E837, known for its minimal invasiveness, for measuring in situ stress in reinforcing bars embedded within concrete structures. The primary objective is to ascertain the applicability of this method in estimating non-apparent stresses, such as those resulting from the external loads, creep, shrinkage, or alkali-silica reaction, that are needed for structural assessment. Systematic experiments on reinforced concrete beams are conducted to validate the method’s viability in identifying these critical in situ stresses. The findings highlight the potential of the hole-drilling method to enhance structural health monitoring practices, offering an accurate tool for assessing stress states crucial for the maintenance and safety of concrete structures. The results demonstrated that while the hole-drilling method is robust for moderate-stress evaluations (up to about 70% of the nominal yield stress), it overestimates the stress in the reinforcing bar under high-stress conditions near the 100% nominal yield stress. This study contributes to the field by confirming the limits and applicability of the ASTM E837 standard for estimating the existing stress in the embedded reinforcing bars.
10.14359/51745456
SP-363-6
July 1, 2024
Kuo-Wei Wen, Manuel Bermudez, and Chung-Chan Hung
363
Ultra-high-performance concrete (UHPC) features tensile strain-hardening behavior and a high compressive strength. Existing studies on the shear behavior of UHPC structural members have been focused on prestressed UHPC girders. More experimental data of the shear behavior of non-prestressed UHPC beams are necessary to quantify the safety margin of shear designs for structures. Moreover, while the UHPC members in most studies did not contain coarse aggregate to strengthen their microstructure, the inclusion of coarse aggregate has been shown to substantially reduce the autogenous shrinkage and enhance the elastic modulus for UHPC materials, which is beneficial for structural applications of UHPC. This study experimentally investigated the shear failure behavior of eighteen non-prestressed rectangular UHPC beams. The experimental variables included the volume fraction of fibers, shear span-to-depth ratio of the beams, and coarse aggregate. The detailed shear failure responses of the UHPC beams were discussed in terms of the damage pattern, shear modulus, shear strength, shear strain, and strain energy. The test results showed that the inclusion of coarse aggregate increased the beam shear strength, and its enhancement became more significant with a higher volume fraction of fibers and a lower shear span-to-depth ratio of the beam. In addition to the experimental investigation, a shear strength model for non-prestressed rectangular UHPC beams that accounts for the interactive effect of the key design parameters was developed. An experimental database of the shear strength of the UHPC beams in existing studies was established to assess the performance of the proposed model. It was shown that the proposed model reasonably predicted the shear strength of the UHPC beams in the database with a higher accuracy and lower scatter compared to the results of existing models.
10.14359/51742109
SP-362_70
June 18, 2024
Nader Ghafoori, Ariful Hasnat, and Aderemi Gbadamosi
362
This paper examines the influence of harvested fly ash on the properties of mortar and concrete. Class F and harvested fly ash were used at the substitution rate of 20% by weight of Portland cement. The investigated properties included heat release, consistency, setting time, compressive strength at different testing ages, absorption, the volume of permeable voids, surface resistivity, and drying shrinkage. The results revealed that the harvested fly ash produced the lowest released heat of hydration and longest setting times. Mixtures containing harvested fly ash displayed lower strength at all curing ages. Compared to traditional fly ash, harvested fly ash showed inferior transport properties for both absorption rate, permeable voids, and surface resistivity. Mixtures containing harvested fly ash showed comparable 120-day drying shrinkage when compared with the companion mortars made with traditional fly ash.
10.14359/51742020
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer