Title:
Analysis and Design of NiTi Superelastic SMA-Reinforced ECC Bridge Columns
Author(s):
Mostafa Tazarv and M. Saiid Saiidi
Publication:
Symposium Paper
Volume:
341
Issue:
Appears on pages(s):
105-130
Keywords:
Advanced Material; Analysis; Design; ECC; Novel Column; RC Bridge, SMA
DOI:
10.14359/51727027
Date:
6/30/2020
Abstract:
Current seismic codes prevent bridge collapse under strong earthquakes. For conventional reinforced concrete (RC) bridges, this performance objective is usually achieved through confinement of ductile members such as columns. When an RC bridge column undergoes large displacements, its reinforcement yield and sometimes buckle, the cover concrete spalls, and the core concrete sometimes fail. Damage of reinforcement and core concrete is not easy to repair. Advanced materials and new technologies are emerging to enhance the seismic performance of RC bridge columns by reducing damage, increasing displacement capacities, and/or reducing permanent lateral displacements. Two types of advanced materials, shape memory alloy (SMA) bars and engineered cementitious composite (ECC), are the focus of the present study. SMA bars are viable reinforcement for concrete structures since they resist large stresses with minimal residual strains. Furthermore, ECC, which is a type of fiber-reinforced concrete, shows significant tensile strain capacities with minimal damage. SMA-reinforced ECC bridge columns are ductile with minimal damage and insignificant residual displacements under extreme events. A displacement-based design method for NiTi superelastic SMA-reinforced ECC bridge columns is proposed based on large-scale experimental and extensive analytical studies. A summary of the proposed guidelines, background information, and supporting studies are presented for this novel column type to facilitate field deployment. Finally, the details of the world first SMA-reinforced ECC bridge constructed in Seattle, USA, is discussed.