ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 11 Abstracts search results

Document: 

SP255-01

Date: 

October 1, 2008

Author(s):

L.T. Phan

Publication:

Symposium Papers

Volume:

255

Abstract:

Effects of elevated temperature exposure and various factors, including water-to-cementitious material ratios (w/cm), curing conditions, heating rates, test methods, and polypropylene (PP) fibers, on (1) pore pressure buildup and potential for explosive spalling and on (2) degradation of mechanical properties in normal-strength (NSC) and high-strength concrete (HSC) are presented. Degradations of mechanical properties were measured using 100 x 200 mm cylinders, heated to temperatures of up to 600 °C at 5 °C/min, and compared with results of other studies and existing codes. Pore pressures were measured using 100 x 200 x 200 mm blocks, heated to 600 °C at 5 °C/min and 25 °C/min. Experimental evidences of the complex, temperature-dependant moisture transport process that significantly influenced pore pressure and temperature developments are described.

DOI:

10.14359/20217


Document: 

SP255-04

Date: 

October 1, 2008

Author(s):

L.R. Taerwe

Publication:

Symposium Papers

Volume:

255

Abstract:

Whereas traditionally the verification of fire safety is based on prescriptive measures and criteria, an evolution toward performance-based design can be noticed, which is reflected in the design approaches given in the fire parts of Eurocodes 1 and 2. In Part 1-2 of Eurocode 11, general design aspects of structures exposed to fire are given as well as specific load combinations, design values of thermal and mechanical material properties, fire models, and heat transfer models. Most of these design principles are applicable to all types of construction materials. In Part 1-2 of Eurocode 22, specific approaches related to concrete structures are given, i.e., models giving the influence of high temperatures on material characteristics, a method based on tabulated values, simplified verification methods, and the basic principles of advanced calculation methods. In this paper, a review is presented of the most relevant clauses of the mentioned documents. For practical applications, the complete documents should be consulted.

DOI:

10.14359/20220


Document: 

SP255-03

Date: 

October 1, 2008

Author(s):

M.A. Youssef, S.F. El-Fitiany, and M.A. Elfeki

Publication:

Symposium Papers

Volume:

255

Abstract:

Fire is one of the common events that might occur during the lifetime of any concrete structure. At elevated temperatures, mechanical properties of concrete and reinforcing bars experience significant deterioration. Following a fire event, these properties improve with time toward their original values. The paper focuses on the flexural behavior of unreinforced or lightly reinforced siliceous concrete slabs after exposure to elevated temperatures. Such behavior is controlled by the concrete tensile behavior. Models to predict related concrete and steel mechanical properties during and after exposure to elevated temperatures are presented. When needed, new models are developed based on available experiments data. A case study involving flexural testing of 11 concrete slabs after 85 days from exposure to fire is presented. The slabs were protected by a thin sprayed liner (TSL). The case study allowed evaluating the presented models and assessing the effect of the TSL layer on the slabs’ behavior.

DOI:

10.14359/20219


Document: 

SP255-02

Date: 

October 1, 2008

Author(s):

M. Guerrieri, J. Sanjayan, and F. Collins

Publication:

Symposium Papers

Volume:

255

Abstract:

A hydrocarbon fire test was conducted on nine concrete slabs incorporating three different types of binders: 100% ordinary portland cement (OPC), 50% OPC, and 50% ground-granulated blastfurnace slag (GGBFS), and alkali-activated slag (AAS). The specimens (780 mm [30.71 in.] x 360 mm [14.17 in.]) were made with three different thicknesses (100 mm [3.94 in.], 200 mm [7.87 in.] and 400 mm [15.75 in.]). Specimens were tested at an age of six months when the strengths were about 75 Mpa (10,877 psi). The specimens were exposed to the hydrocarbon fire on one side. Explosive spalling only occurred in the 400 mm (15.75 in.) AAS concrete specimen that had a lower moisture content and higher permeability than the OPC and OPC/slag concretes. This suggests that the well-renowned moisture clog theory is unlikely to be a predominant mechanism of spalling in AAS concrete. It is speculated that high thermal gradients caused explosive spalling in the AAS concrete specimen.

DOI:

10.14359/20218


Document: 

SP255-06

Date: 

October 1, 2008

Author(s):

M.B. Dwaikat and V.K.R Kodur

Publication:

Symposium Papers

Volume:

255

Abstract:

The fire resistance of reinforced concrete beams, computed as per three codes, namely, ACI 216.1, Eurocode 2, and AS 3600, is compared with that predicted from finite element analysis. A macroscopic finite element model, capable of tracing the behavior of restrained reinforced concrete beams from pre-fire stage to collapse, is used in the analysis. The model accounts for high temperature material properties, fire-induced strains (thermal, transient, and creep strains in addition to mechanical strain) and restraint effects as a result of fire exposure. Since restraint has a significant effect on fire resistance of reinforced concrete beams, the comparison is carried out for four cases of reinforced concrete beams with different boundary conditions. The first case represents a simply supported beam, while the other three cases represent axially restrained, rotationally restrained, and axially and rotationally restrained beams, respectively. Through the results of the case studies, it is shown that there is a large variation in the fire resistance predictions from the three codes, with Eurocode 2 being the most conservative and ACI 216.1 being the least conservative. It is also shown that the degree of axial restraint, rotational restraint, and type of failure criteria have significant influence on the fire resistance of reinforced concrete beams.

DOI:

10.14359/20222


123

Results Per Page