Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 12 Abstracts search results
Document:
SP341
Date:
July 17, 2020
Publication:
Symposium Papers
Volume:
341
Abstract:
ACI Committees 441 – Reinforced Concrete Columns and 341A – Earthquake-Resistant Concrete Bridge Columns, Mohamed A. ElGawady Columns are crucial structural elements in buildings and bridges. This Special Publication of the American Concrete Institute Committees 441 (Reinforced Concrete Columns) and 341A (Earthquake-Resistant Concrete Bridge Columns) presents the state-of-the-art on the structural performance of innovative bridge columns. The performance of columns incorporating high-performance materials such as ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), high-strength concrete, high-strength steel, and shape memory alloys is presented in this document. These materials are used in combination with conventional or advanced construction systems, such as using grouted rebar couplers, multi-hinge, and cross spirals. Such a combination improves the resiliency of reinforced concrete columns against natural and man-made disasters such as earthquakes and blast.
DOI:
10.14359/51727058
SP-341-05
June 30, 2020
Author(s):
Yu-Chen Ou, Samuel Y.L.Yin, Yi-Qing Liu, and Jui-Chen Wang
The use of unstressed Grade 1860 (MPa) seven-wire steel strands as longitudinal reinforcement in columns has the advantage of reducing the cost of steel as compared with conventional Grade 420 (MPa) deformed steel bars. A preliminary experimental study was conducted to investigate the performance of a column with unstressed seven-wire strands as longitudinal reinforcement. Large-scale column specimens were designed and tested using double-curvature lateral cyclic loading under a constant axial load. Test results showed that the column with strands as longitudinal reinforcement (RH1) showed less and wider cracks and less energy dissipation than the column with deformed bars as longitudinal reinforcement (ORH1). Despite this, RH1 showed a slightly higher drift capacity than ORH1 even when the strands used in RH1 had a much lower ultimate strain than the deformed bars used in ORH1.
10.14359/51727026
SP-341-04
Mahmoud Aboukifa, Mohamed A. Moustafa and Ahmad Itani
Ultra-High Performance Concrete (UHPC) is a versatile building material as it is characterized by very high compressive strengths reaching 30 ksi [200 MPa], ductile tensile characteristics, and energy absorption. Currently, UHPC is commonly used in limited structural applications, such as joints and connections between precast structural elements. To extend the use of UHPC in full structural elements, a better understanding of the structural behavior and failure mechanism of such elements is needed. One potential application of UHPC for structural elements is columns, which is the focus of this study. This paper presents an experimental investigation of the behavior of UHPC column subjected to combined axial and lateral loading. A large-scale UHPC column is tested under axial and quasi-static cyclic lateral loading at the Earthquake Engineering Laboratory at the University of Nevada, Reno. To establish a comparison with conventional columns, a normal strength concrete (NSC) column with same dimensions and design as the tested UHPC column is analytically modeled and analyzed under similar loading protocol using OpenSEES. The experimental response of the UHPC column is evaluated and compared to the analytical response of the NSC column. Both global and local behavior are presented and discussed to include damage progression, failure type, peak moment strength, stiffness degradation, and displacement and curvature ductility.
10.14359/51727025
SP-341-03
Hyun-Oh Shin, Hassan Aoude and Denis Mitchell
Ultra-high-performance concrete (UHPC) is an innovative material that exhibits high compressive and tensile strength as well as excellent durability. The provision of fibers in UHPC results in improved ductility and increased toughness when compared to conventional high-strength concrete. These properties make UHPC well-adapted for use in the columns of high-rise buildings and heavily-loaded bridges. This paper summarizes the results from a database of tests examining the effects of various design parameters on the axial load performance of UHPC columns. Experimental results illustrating the effects of concrete type (UHPC vs. high-strength and ultra-high-strength concrete), UHPC compressive strength and transverse reinforcement detailing are presented. The results show that the use of UHPC in columns resulted in increased load carrying capacity and post peak ductility when compared to conventional high-strength or ultra-high-strength concrete due to the ability of steel fibers to delay cover spalling. However, greater amounts of confinement reinforcement were required to achieve the same level of axial load performance as the UHPC compressive strength was increased from 150 to 180 MPa. The results also showed that the amount, spacing, and configuration of transverse reinforcement, as well as their interaction significantly affected the axial load response of UHPC columns. However, increasing the amount of transverse reinforcement had the most pronounced effect on post-peak behavior. The effect of the confinement provisions in current codes (CSA A23.3-14 and ACI-318-14) on the ductility of the UHPC columns was also investigated. Based on the results, an alternative confinement expression for achieving ductile behavior in UHPC columns was proposed.
10.14359/51727024
SP-341-02
Sarah De Carufel and Hassan Aoude
This paper presents the results from tests examining the blast performance of columns constructed with ultra-high-performance concrete (UHPC) and high-performance reinforcement (high-strength steel or stainless steel). As part of the study six columns with square cross-sections were tested under simulated blast loads using a shock-tube at the University of Ottawa. Parameters investigated include the effects of concrete type, longitudinal reinforcement type and longitudinal reinforcement ratio. The results demonstrate that the use of UHPC increases the blast performance of reinforced concrete columns by increasing blast capacity and improving control of maximum and residual mid-span displacements by an average of 30% and 40%. Substitution of normal-strength bars with high-strength or stainless steel bars in the UHPC columns resulted in further reductions in displacements, which ranged between 18-43% for maximum deformations and 38-66% for residual deformations. The failure mode of all columns with low steel ratio of 1.24% (4 – No.3 bars) was tension bar rupture, regardless of steel type. Increasing the steel ratio from 1.24% to 1.84% (6 –No.3 bars) increased blast capacity and delayed failure. The use of increased amount of stainless steel bars was particularly effective, and transformed the failure mode from bar rupture to fiber pullout. The analytical study confirms that dynamic inelastic SDOF analysis can be used to reasonably predict the blast response of UHPC columns reinforced with varying steel types.
10.14359/51727023
Results Per Page 5 10 15 20 25 50 100