ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 15 Abstracts search results

Document: 

SP87-01

Date: 

September 1, 1985

Author(s):

Joseph P. Colaco

Publication:

Symposium Papers

Volume:

87

Abstract:

The article describes the use of high-strength concrete in the 75-story composite frame for the Texas Commerce Plaza in Houston. The advantages of the high-strength concrete were to re-duce column sizes and to increase stiffness. All the concrete in this tower (approximately 100,000 cyd.) was successfully pumped, the highest placement being almost a 1,000' above the street level.

DOI:

10.14359/6520


Document: 

SP87-11

Date: 

September 1, 1985

Author(s):

Y. K. Yong, Douglas H. McCloskey, and Edward G. Nawy

Publication:

Symposium Papers

Volume:

87

Abstract:

High strength concrete is used in increasing volume in the construction of structural components. While much research has been done on reinforced concrete corbels, experimental data on the behavior of corbels using high strength concrete remain scarce. The ACI Special Provisions for Brackets and Corbels is based primarily on experimental results of corbels with concrete strength less than 6000 psi (41.4 MPa). The purpose of this study is to check the applicability of the ACI Code and the truss analogy theory proposed recently by Hagberg to reinforced concrete corbels with concrete strengths greater than 6000 psi (41.4 MPa). A total of eight corbels, divided into four series with concrete strength ranging from about 6000 psi (41.7 MPa) to 12,800 psi (82.7 MPa) were studied in the Rutgers Civil Engineering Laboratory. The corbels (shear span to dept ratio, a/d = 0.39) were loaded monotonically to failure and magnitudes of the strains in the primary steel, stirrups and cage steel were recorded along with the vertical load. Analysis of results indicated that the ACI Code Provisions are conservative. The truss analogy model predicts values which are safe and less conservative than the ACI Code. The degree of conservatism of the ACI Code found in the case of these tests will not necessarily be found in tests with larger a/d ratios and/or tests in which outward horizontal loads are applied to the specimens in addition to the vertical loads.

DOI:

10.14359/6530


Document: 

SP87-07

Date: 

September 1, 1985

Author(s):

Arthur H. Nilson

Publication:

Symposium Papers

Volume:

87

Abstract:

Research at Cornell University over an eight, year period, on concrete with comprehensive strenght in the range from 6000 to 12,000psi 41-83MPa) has established a good basic for understanding the fundamental nature of the material and has also provided information on engineering properties such as moduls of elatisity, tensile strength, creep coeficient possion, ratio, rate of strength gain with age, and strain limit values. Some of these are reviewed briefly. The main purpose of the paper is to summarize more recent Cornell research dealing with the behavior of reinforced and prestressed concrete structural members, made using high strength concrete. Test have included axially-loaded members with varying amounts of spiral confinment steel, flexural critical beams with varying amounts of tensile and compressive reinforcement, and stirupps, reinforced concrete beams under sastained load of 3 years duration, shear critical reinforced concrete beams. It was found that while many provisions of the 1983 ACI code are applicable to high strength concrete materials and members certain code provisions must be reexamined, modified, or limited to insure structural saftey and servability.

DOI:

10.14359/6526


Document: 

SP87-06

Date: 

September 1, 1985

Author(s):

F. David Anderson

Publication:

Symposium Papers

Volume:

87

Abstract:

High-strength concrete (8000 pounds per square inch or above) requires that a high level of structural integrity be achieved because of the demanding applications for which it is generally selected. natural limitations of As the inher-approached, the product are close control of materials production and placement is increasingly important. Statistical methods to provide such control are outlined in this paper.

DOI:

10.14359/6525


Document: 

SP87-09

Date: 

September 1, 1985

Author(s):

S. E. Swartz, A. Nikaeen, H. D. Narayan Babu, N. Periyakaruppan, and T. M. E. Refai

Publication:

Symposium Papers

Volume:

87

Abstract:

Higher strength concrete which is defined to be that with uniaxial, 12000 psi compressive strength in the range of 6000 psi

DOI:

10.14359/6528


123

Results Per Page