ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 15 Abstracts search results

Document: 

SP340

Date: 

April 30, 2020

Author(s):

Andrzej S. Nowak, Hani Nassif, Victor Aguilar

Publication:

Symposium Papers

Volume:

340

Abstract:

Professor Dennis Mertz passed away after a prolonged battle with cancer. He spent a large portion of his professional career working on advancing of the state-of-the-art of bridge engineering. He was a great friend and colleague to many at ACI and ASCE. Joint ACI-ASCE Committee 343, joined with ACI Committees 342 and 348, sponsored four sessions to honor his contributions and achievements in concrete bridge design and evaluation. These sessions highlighted the important work and collaborative efforts that Dr. Mertz had with others at ACI and ASCE on various topics. These sessions also combined the efforts among ACI and ASCE researchers and practitioners in addressing various topics related to the design and evaluation of concrete bridges. The scope and outcome of the sessions are relevant to ACI’s mission. They raise awareness on established design methodologies applied for various limit states covering topics related flexure, shear, fatigue, torsion, etc. They address problems related to emerging design and evaluation approaches and recent development in design practices, code standards, and related applications. The Symposium Publication (SP) is expected to be an important reference in relation to design philosophies and evaluation methods of new and existing concrete bridges and structures.

DOI:

10.14359/51725848


Document: 

SP-340-01

Date: 

April 1, 2020

Author(s):

John M. Kulicki and Gregg A. Freeby

Publication:

Symposium Papers

Volume:

340

Abstract:

Dr. Dennis Mertz was involved with the AASHTO LRFD Bridge Design Specifications [1] for 30 years. Starting with the original development of the specifications and continuing with maintenance and related course development and presentations. His last major contribution to the Specifications was to serve as Principal Investigator for the reorganization of Section 5, Concrete Structures. This presentation summarizes the changes to the structure of the Section including the increased emphasis on design of “B” and “D” regions of flexural members and introduces new and expanded material on beam ledges and inverted T-caps, shear and torsion, anchors, strut and tie modeling and durability. The product of this work was included in the 8th Edition of the Specifications as a complete replacement of Section 5.

DOI:

10.14359/51725803


Document: 

SP-340-06

Date: 

April 1, 2020

Author(s):

Maria Kaszynska and Adam Zielinski

Publication:

Symposium Papers

Volume:

340

Abstract:

The research paper presents an analysis of autogenous shrinkage development in self-consolidating concrete (SCC). The first stage of the study involved an evaluation of concrete susceptibility to cracking caused by shrinkage of SCC with natural and lightweight aggregate. The shrinkage was tested on concrete rings according to ASTM C 1581/C 1581M- 09a. The influence of aggregate composition, the water content in lightweight aggregate, and SRA admixture on the reduction of concrete susceptibility to cracking, due to the early-age shrinkage deformation was determined. In the second stage of the research, the innovative method measurement of autogenous shrinkage was developed and implemented. The tests were performed on concrete block samples, dimensions 35x150x1150 mm, that had the same concrete volume as ring specimen in the ASTM method. Linear deformation of the concrete samples was measured in constant periods of 500 s using dial gauges with digital data loggers. The investigation allowed evaluating of the influence of water/cement (w/c) ratio of 0.28, 0.34, 0.42, and of aggregate composition on the development of autogenous shrinkage in different stages of curing SCC. The results were compared to existing material models proposed by other researchers. The conducted study indicated a significant influence of the w/c ratio and composition of aggregate on the concrete susceptibility to crack caused by the autogenous shrinkage deformation.

DOI:

10.14359/51725808


Document: 

SP-340-07

Date: 

April 1, 2020

Author(s):

Sary A. Malak and Neven Krstulovic-Opara

Publication:

Symposium Papers

Volume:

340

Abstract:

This paper provides an overview of simplified methods for dynamic blast analysis of structural members. The presented approach focuses on the use of a general simplified non-linear single degree of freedom dynamic model commonly used for typical flexural members such as slabs, beams or columns. The presented approach also allows modeling of members retrofitted against blast loading using fiber composites. The fiber composites considered in this paper include conventional Steel Fiber Reinforced Composites (FRC) as well as High Performance Fiber Composites (HPFRC). HPFRC’s include Short Steel Slurry Infiltrated Concrete (SIFCON), Long Continuous Slurry Infiltrated Steel Fibers Mat Concrete (SIMCON), and Fiber Reinforced Polymers (FRP). The model identifies different material parameters that affect the response of the structure. The effect of the material properties on the composite response is discussed within the framework of the existing blast-resistance guidelines and standards. Different retrofit techniques for existing concrete structures using fiber reinforced composites and the effect of varying the composite material properties on the response is presented. Final conclusions and recommendations are provided in terms of composite material’s properties, modeling performance and response. Specific limitations on their use is also discussed.

DOI:

10.14359/51725809


Document: 

SP-340-09

Date: 

April 1, 2020

Author(s):

Steven L. Stroh

Publication:

Symposium Papers

Volume:

340

Abstract:

This paper provides a description and design developments of the extradosed prestressed bridge concept. The development of the extradosed prestressed bridge concept is discussed, drawing upon the differences with a cable-stayed bridge type. Proportioning parameters used for initial concept development or verification are provided. This includes recommendations on span ranges, structure depth, tower height and multi-span applicability. Stay cable design considerations are discussed. These proportioning parameters are applied to a prototype design, the Pearl Harbor Memorial Bridge. Aesthetic opportunities for this new bridge type are discussed.

DOI:

10.14359/51725811


123

Results Per Page