Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 22 Abstracts search results
Document:
SP124-17
Date:
September 1, 1990
Author(s):
R. N. Swamy and M. W. Hussin
Publication:
Symposium Papers
Volume:
124
Abstract:
Presents comprehensive test data on the flexural strength, deflection, and cracking behavior of thin sheets of 6 to 13 mm thickness reinforced with a wide range of reinforcing elements. Two different sizes of sheets were generally tested under four-point loading, and in the case of glass fibers, a further small laboratory scale test specimen was also tested. Five different types of reinforcing elements were used: steel fibers, welded steel mesh without and with steel fibers, two types of woven polypropylene fabrics and glass fibers. The matrix was designed for durability and high workability with low water-binder ratio and a superplasticizer. In addition, 50 to 70 percent of the portland cement was replaced by fly ash. Extensive test data are presented and compared in terms of limit proportionality, modulus of rupture and cracking. It is shown that a wide range of reinforcement elements can be successfully used for thin sheet applications, and that the performance characteristics of thin sheets are very much a function of the type, geometry, and volume fraction of the reinforcement.
DOI:
10.14359/2821
SP124-16
T. P. Tassios and V. Karaouli
A simplified analytical procedure is proposed to predict stress-strain diagram of ferrocement composites under tension. A fracture mechanics approach is used to predict the load at first cracking. Results of a limited experimental investigation are also shown and used to evaluate the analytical model. The influence of curing is also demonstrated experimentally.
10.14359/2814
SP124-14
Mohsen Rahimi and H. T. Cao
Flexural behavior of sandwich beams reinforced with thin layers of steel-fiber reinforced mortar was studied in this investigation. The effect of variations in thickness of the reinforced layer on the modulus of rupture, Young's modulus, and toughness of the member was investigated. This investigation considered one single specimen size with fiber reinforced mortar using one fiber geometry and content. Steel fibers with 0.6 x 0.3 mm cross section and 18 mm long were used. The specimens were cast in 100 x 100 x 350 mm molds. Eight series of sandwich beams with different thicknesses of the reinforced layer were tested. Experimental results indicated that sandwich beams can have strength and toughness comparable to fully fiber reinforced beams. The minimum thickness of the fiber reinforced layer required to impart ductile behavior to the sandwich beam was found to be about one-sixth of the beam depth.
10.14359/2797
SP124-02
J. G. Keer
The production of a polypropylene-reinforced cement material marketed as an alternative to asbestos-cement is outlined. Typical tensile stress-strain curves of a number of alternative materials are compared with asbestos-cement. The load-deflection characteristics of corrugated sheets made from nonasbestos materials are also presented and discussed. The nonasbestos materials are generally much less brittle than asbestos-cement, although they have a lower first-cracking strength. The pseudo-ductile behavior exhibited, with multiple cracking before the ultimate load is reached, means that permissible loads in service must not be based solely on ultimate loads but on cracking and possible deflection criteria. Less well-defined stresses arising during installation and from restrained moisture movements, which may crack the nonasbestos materials, are likely to be critical for the effective performance of new sheeting materials.
10.14359/2789
SP124-10
N. W. Hanson, J. J. Roller, J. I. Daniel, and T. L. Weinmann
Thin-walled, nonload-bearing exterior building facade panels of glass fiber reinforced concrete (GFRC) are manufactured by the spray-up process. Controlled factory conditions with strict attention to quality control are essential to help assure manufacture of a high-quality product. Furthermore, careful attention to installation and erection procedures cannot be overlooked. Paper describes the authors' experiences during their involvement in several major GFRC facade installations. Observations made during successful GFRC panel applications, and lessons learned in evaluation of GFRC facade failures, have formed the basis for development of an effective Quality Control/Quality Assurance (QC/QA) program that has been successfully implemented. Paper addresses QC/QA aspects of panel manufacture and installation that go beyond guidelines given in the PCI Recommended Practice. Methodologies presented in this paper will be a valuable tool for owners, designers, manufacturers, and contractors participating in the manufacture and installation of GFRC facades.
10.14359/3505
Results Per Page 5 10 15 20 25 50 100