Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 15 Abstracts search results
Document:
SP127
Date:
October 1, 1991
Author(s):
Editor: S.K. Ghosh
Publication:
Symposium Papers
Volume:
127
Abstract:
SP127 This new special publication covers areas of: - Description of earthquake ground motion - Performance of systems and components in past earthquakes - Experimentally observed inelastic behavior of systems and components - Modeling hysteretic response of concrete members - Inelastic analysis - Deformability of structural components - Seismic design - Seismic detailing This publication helps provide economical new buildings with an enhanced seismic safety.
DOI:
10.14359/14159
SP127-14
James Robert Harris and Gene R. Stevens
Current building standards contain complex sets of rules for detailing reinforced concrete structures to resist earthquakes. The rules are intended to deliver reliable post-elastic energy dissipation. This is necessary because structures are designed to yield at levels of motion that are only a fraction of the real motions in a strong earthquake. The detailing rules are intended to prevent brittle modes of failure, such as shear and unconfined compression of concrete, while encouraging widespread flexural yielding. The rules also take into account two other distinctive characteristics of earthquake loading reversal of direction and repetitive cycles. This paper attempts to set forth the rationale for these detailing rules that will allow the designer to see the overall design philosophy and to relate a particular design to the intended performance.
10.14359/3029
SP127-13
Mark Fintel and S. K. Ghosh
An alternative to the empirical code approach for earthquake-resistant design of building structures is proposed. The suggested procedure uses carefully selected earthquake accelerograms as loading and dynamic inelastic response history analysis to determine member forces and deformations. A number of analyses make it possible to design into the structural elements a desirable balance between flexural strength, shear capacity, and ductility. The amount of allowable ductility in a yielding member depends on selected serviceability criteria and on the deformational capacity of the member. The design approach makes it possible to predetermine the sequence in which inelasticity spreads to various designated structural members. A structure needs to be provided with special ductility details only in the predetermined hinging regions.
10.14359/3028
SP127-12
Richard E. Klingner
Discusses the relationship between the topics covered previously in this publication and modern design codes for reinforced concrete. Three modern code-type documents are discussed: the 1988 Uniform Building Code; the Building Seismic Safety Council's 1988 NEHRP document; and the 1982 New Zealand National Standard for Reinforced Concrete Design. The principal requirements of each document with respect to the seismic design of reinforced concrete buildings are summarized, and the philosophical bases of those requirements are reviewed.
10.14359/3026
SP127-11
Sharon L. Wood
The influence of the amount of reinforcement, axial stress, and loading history on the displacement capacity of slender reinforced concrete walls is discussed. Observations are based on the results of 27 laboratory tests of isolated walls. All walls sustained lateral displacements in excess of 1 percent of their height without appreciable loss in strength.
10.14359/3024
Results Per Page 5 10 15 20 25 50 100