ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 17 Abstracts search results

Document: 

SP177-07

Date: 

January 1, 1999

Author(s):

K. L. Scrivener and M. C. Lewis

Publication:

Symposium Papers

Volume:

177

Abstract:

A series of mortars was studied, cured at 20, 80 or 90°C. The variables studied included sulfate level, alkali additions and slag additions. In parallel with measurements of dimensional changes, detailed study of the microstructural and microchemical changes was made by XRD and by SEM. One of the main findings of this study is that the composition of C-S-H gel around partially hydrated cement grains, analysed one day after heat curing, is significantly different between mortars which subsequently expand when water at 20°C and those mortars which do not expand. The details conserved in of this observation, its implications and expansion are discussed. limitations, and possible mechanisms of

DOI:

10.14359/6230


Document: 

SP177-02

Date: 

January 1, 1999

Author(s):

V. Michaud and R. Suderman

Publication:

Symposium Papers

Volume:

177

Abstract:

Changes in the cement manufacturing process such as the use of higher sulfur fuels have tended to raise clinker sulfate levels and SO3/alkali ratios. As a consequence, interground gypsum additions to cement have dropped because more sulfate is available from the clinker. Also, these clinker sulfates tend to be available as double sulfate salts; calcium langbeinite instead of potassium sulfate. What is the impact of clinkers with high SO, level on concrete performance; mainly on its workability and durability ? The aim of this study is to provide some answers to this question. Cements made from either high SO, clinker or low SO, clinker and gypsum or hemihydrate, but with a given chemical composition, have been simulated by pure phase materials and hydrated up to one hour. Calcium langbeinite is rapidly dissolved. Because of its dissolution rate and ability to form “blocking ettringite”, high calcium langbeinite clinkers should provide improved rheological properties. Moreover, cements made with clinkers containing significant quantities of calcium langbeinite should have a similar workability and durability to a cement made with a low sulfate clinker to which larger quantities of gypsum have been added. The dissolution rate of anhydrite potentially existing in very high SO3/alkali clinker has also been simulated. Experiments indicate that it dissolves and reacts quite quickly so that it should not provide any durability problem if present in cement and concrete.

DOI:

10.14359/6225


Document: 

SP177-14

Date: 

January 1, 1999

Author(s):

J. Stark and H. M. Ludwig

Publication:

Symposium Papers

Volume:

177

Abstract:

The effects of chemical transformation processes on the frost and frost-deicing salt resistance of concrete are much less significant than the physical effects, but they are nevertheless significant. Our investigations showed that monosulfate (AFm phase) is particularly instable and will transform to ettringite (AFt phase) under frost and also under frost-deicing salt attack. This delayed formation of ettringite, which is supported by thermodynamic conditions at low temperatures, may reduce considerably the frost and frost deicing salt resistance of concretes without air-entrainment.

DOI:

10.14359/6237


Document: 

SP177-06

Date: 

January 1, 1999

Author(s):

W. Klemm and F. M. Miller

Publication:

Symposium Papers

Volume:

177

Abstract:

Recent debate on delayed ettringite formation (DEF) as a form of internal sulfate attack - a distress mechanism for ambient- and steam-cured concrete - has motivated this paper, which examines relevant data from the literature and from the authors’ laboratory. DEF can be associated with distress in high temperature concrete, but not for ambient-curing in the absence of external SO3 sources, or an aggregate sulfate source. The two internal SO3 sources cited as potentially responsible -anhydrite in clinker and high SO3 concentrations in the silicate phases -are shown to be absent or fundamentally innocuous.

DOI:

10.14359/6229


Document: 

SP177-13

Date: 

January 1, 1999

Author(s):

W. G. Hime and S. L. Marusin

Publication:

Symposium Papers

Volume:

177

Abstract:

During the past few years delayed ettringite formation (DEF) has probably received more attention, and been involved in more controversy, than any other concrete deterioration mechanism. Even its name has been subject to dispute. Our extensive experience on the investigation of many occurrences of DEF is presented here as a series of questions, with some answers. Where answers have become available, they have explained phenomena that have greatly bothered us and other investigators. Where answers are not available, the questions will provide directions for needed research.

DOI:

10.14359/6236


1234

Results Per Page