ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Dimensional Stability of Concrete Slabs-on-Ground

Author(s): Shideh Shadravan, Thomas H.-K. Kang and Chris Ramseyer

Publication: Symposium Paper

Volume: 307

Issue:

Appears on pages(s): 1-22

Keywords: dimensional stability; drying shrinkage; shrinkage compensating concrete; warping; curling; slab-onground.

DOI: 10.14359/51688877

Date: 3/1/2016

Abstract:
This paper reexamines the authors’ experimental results on the dimensional stability of concrete slab-on-ground under a variety of environmental conditions. The experiments considered the dimensional properties of concrete slab materials using both Demec targets and vibrating wire strain gages. Realistic slab-on-ground sections were investigated in this study in that the concrete slabs were exposed to a controlled environment on the top surface and to actual ground moisture on the bottom surface. The concrete materials tested were normal Portland cement concrete (PCC), high strength concrete (HSC), concrete with shrinkage reducing admixtures (SRA), and concrete with calcium sulfoaluminate cement (CSA). The compiled database contains: 1) standard concrete material test results; 2) joint movements in concrete slab-on-ground; and 3) internal relative humidity and temperature through the slab-on-ground depth. The experimental results revealed that CSA was quite stable with little long-term shrinkage/cracking or warping, whereas PCC and HSC had continuing crack growth during 600 days of curing. The SRA exhibited a modest reduction in shrinkage/crack at the early stage, and while this decrease extended for the length of the testing no further decrease in the shrinkage growth or sectional stability was noted when compared to PCC at the end of 2 years. Evaluation of the vibrating wire strain gage method of measuring long term concrete shrinkage was found to be less prone to user bias and more accurate than the Demec target method or the ASTM C157 method.