ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Feasibility of a Radiant Floor Cooling System for Residential Buildings with Massive Concrete Slab in a Hot and Humid Climate

Author(s): Chang‑Ho Jeong, Myoung‑Souk Yeo and Kwang‑Woo Kim

Publication: IJCSM

Volume: 13

Issue:

Appears on pages(s):

Keywords: radiant floor cooling system, residential building, surface condensation, dehumidification, concrete slab

DOI: 10.1186/s40069-018-0314-z

Date: 2/28/2019

Abstract:
In Korea, radiant floor heating systems are commonly used in residential buildings, even high-rise houses. If these existing radiant floor heating panels could be used for cooling as well, additional benefits beyond the basic advantages of radiant heating and cooling systems in terms of energy efficiency and comfort level could be conferred upon the homeowner, such as avoiding redundant investments for both heating and cooling equipment, and reducing the area occupied by the equipment. However, the comfort requirement of floor surface temperature has to be satisfied, because the human body comes in direct contact with the floor surface. In addition, dehumidification equipment is required to remove the latent load and to prevent surface condensation. It may be particularly difficult to apply such a system in high-rise residential buildings with massive concrete slabs as compared to light-weight buildings, because of the complexity of the system configuration and the thermal capacity of the building structure. In this study, the feasibility of radiant floor cooling systems (RFCS) for residential buildings with massive concrete slabs was evaluated. The strategy for the configuration and arrangement of an RFCS was based on the current configuration of the heating and cooling system as well as the cooling load. Then, through field testing, the performance of this system for cooling and condensation prevention was evaluated along with the occupants’ characteristics for adjusting parameters related to thermal comfort. As a result, an RFCS combined with supplementary equipment for dehumidification and cooling would satisfy the requirements for cooling and condensation prevention in a residential house with multi-zones.