ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 399 Abstracts search results

Document: 

24-020

Date: 

September 13, 2024

Author(s):

Ben Wang, Abdeldjelil Belarbi, Bora Gencturk, and Mina Dawood

Publication:

Materials Journal

Abstract:

This study reviewed, synthesized, and extended the service life prediction models for conventional reinforced concrete (RC) structures to those with advanced concrete materials (i.e., high-performance and ultra-high-performance concrete (HPC and UHPC)), and corrosion-resistant steel reinforcements (i.e., epoxy coated steel, high chromium steel, and stainless-steel reinforcement) subjected to chloride attack. The developed corrosion initiation and propagation models were validated using field and experimental data from the literature. A case study was performed to compare the corrosion initiation and propagation times, and service life of RC structures with different concretes and reinforcements in various environments. It was found that UHPC structures surpassed 100 years of service life in all studied environments. HPC enhanced the service life of conventional normal strength concrete (NC) structures by over three times. In addition, the use of corrosion-resistant reinforcement prolonged the service life of RC structures. The use of high chromium steel or epoxy-coated steel doubled the service life in both NC and HPC. Stainless steel reinforcement yielded service lives exceeding 100 years in all concrete types, except for NC structures in marine tidal zones, which showed an 88-year service life.

DOI:

10.14359/51742263


Document: 

23-329

Date: 

September 13, 2024

Author(s):

Sharifa Al-Fadala, Dana Dashti, Hussain Al-Baghli, Jayasree Chakkamalayath, and Zainab Awadh

Publication:

Materials Journal

Abstract:

Compared to external curing, internal curing enables the judicious use of available water to provide additional moisture in concrete for more effective hydration, and improvement in the performance of concrete structures. However, certain challenges with the incorporation of internal curing materials (ICMs) still need to be addressed as its effectiveness depends on several factors. Furthermore, sustainable construction demands the use of recycled materials, and this paper discusses the comparative evaluation of recycled aggregate (RA) as an ICM with two other types of ICMs on various properties of high-performance concrete in the hardened state under two curing conditions. Concrete mixes were prepared with pre-wetted recycled aggregates (RA), superabsorbent polymers (SAPs), and pre-wetted lightweight volcanic aggregates (LWVA) as ICMs. Concrete performance was compared through the investigation on the strength development, shrinkage, mass loss, and volumetric water absorption. In addition, the change in internal humidity of concrete with time at different stages of hardening was determined. The compressive strength results showed that RA and LWVA are more efficient in the early days, and the performance of SAP is better in the later age due to its slow water-releasing capabilities. Compared to the control mixture, the least reduction in strength of 4% and 8% at 28 days and 90 days, respectively could be observed for the mixes containing RA under both air and water curing.

DOI:

10.14359/51742261


Document: 

21-391

Date: 

September 13, 2024

Author(s):

Davood Mostofinejad, Iman Moosaie, Mohamadreza Eftekhar, and Ebrahim Hesami

Publication:

Materials Journal

Abstract:

This paper investigates the mechanical characteristics (encompassing compressive strength, flexural strength, toughness, and impact resistance) of ultra-high performance fiber-reinforced concrete (UHPFRC) incorporating polypropylene (PP) and polyvinyl alcohol (PVA) fibers. An experimental program was conducted, based on which the polymer and metallic fibers were utilized at the same fiber content, and different sets of single and hybrid fiber-reinforced composites were fabricated and tested. Despite the fact it has been exhibited through previous research that the hybridized PVA-PP fibers do not result in the development of the mechanical characteristics of engineered cementitious composites (ECC), the UHPC composites incorporating such hybrid fibers show augmented levels of toughness, flexural strength, and resistance to impact loads. A comparison was also made to assess the potentiality of the used fibers in terms of environmental impact and cost. Based on the results, hybridization with PVA and PP fibers leads to remarkable improvement in technical performance and mitigation of the economic and environmental impact of UHPFRC composites.

DOI:

10.14359/51742259


Document: 

24-011

Date: 

September 1, 2024

Author(s):

H. Hong, A. Fatima, A. Mukhopadhyay, M. D. Hueste, J. B. Mander, and S. Hurlebaus

Publication:

Materials Journal

Volume:

121

Issue:

5

Abstract:

Although ultra-high-performance concrete (UHPC) is one of the promising materials for precast bridge girder applications due to its advanced properties and durability, its implementation in the precast industry is subject to several potential concerns. To support implementation, this paper presents the development of nonproprietary UHPC mixtures for precast, pretensioned UHPC bridge girder applications. The nonproprietary UHPC mixtures were developed using materials commonly available in the Texas precast industry, with the additional requirement of obtaining a compressive strength of 12 to 14 ksi (83 to 97 MPa) within 24 hours without any heat treatment while maintaining the current precast, pretensioned bridge girder fabrication practices. The fresh, hardened, and durability properties of both laboratory- and plant-made UHPC mixtures were investigated. The research results show that the selected nonproprietary UHPC mixture developed in a laboratory setting can be successfully produced in a precast plant setting with comparable properties.

DOI:

10.14359/51742043


Document: 

23-072

Date: 

August 1, 2024

Author(s):

Jialiang Kou, Shun Yang, and Dongdong Zheng

Publication:

Materials Journal

Volume:

121

Issue:

4

Abstract:

To study the damage characteristics and failure mechanism of reinforced concrete (RC)-damaged beams under cyclic load, the loadstrain curve and stiffness-degradation curve of RC beams were strengthened by adding stirrups. Longitudinal reinforcement and high-ductile concrete (HDC) under repeated load were compared, as well as the flexural ability before and after strengthening. The results show that, compared with the original beam, the strengthening method with longitudinal strengthening at the bottom of the beam has the most obvious improvement in the flexural capacity of the beam. When the longitudinal strengthening is added, the flexural capacity can be increased by 86.25%. According to the actual failure mode of the reinforced beam, the stress-reduction coefficient and height-reduction coefficient are theoretically derived, and the bending capacity of the reinforced beam under each strengthening method is calculated. The theoretical value is in good agreement with the test value.

DOI:

10.14359/51740775


12345...>>

Results Per Page