Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 7 Abstracts search results
Document:
SP94-39
Date:
July 1, 1987
Author(s):
C. Wohlk
Publication:
Symposium Papers
Volume:
94
Abstract:
In Denmark, all important concrete bridges are waterproofed and asphalt paved. Joints in bridge surfacing are important details as leakage often starts along the edges and the expansion devices. Practice has shown that with a proper sealant, joint leakage is much more apt to occur between the sealant and the joint sides than due to a break in the sealant. A low elastic modulus of the sealant will reduce the tension between the sealant and the joint sides and is consequently an important property. A suitable primer should always be used, and the shape factor of the joint should be restricted to about 1:1. The present Danish specifications for joint sealants and primers are quoted and discussed. Important details of the workmanship are also specified. Measurements of typical movements in bridge surfacings are reported. Research concerning new specifications is presented. An elaborate device for testing the deformation properties of joint sealants at different temperatures down to -20 C has been constructed. It is intended to use the device to study the influence of such characteristics as aging, water, alkali, and joint geometry. It is expected that the investigation will result in new and more relevant specifications and easier control procedures. The research is directed toward bridge joints, but the results are applicable to joints in concrete roads as well.
DOI:
10.14359/1713
SP94-04
September 1, 1986
Conrad P.Bridges
The concrete girder for the Pasco-Kennewick Intercity Bridge is continuous (i.e., without intermediate expansion joints) for its entire 2500-ft (762-m) length. Nearly 1800 ft (549 m) of this girder is suspended entirely from towers by stay cables. The remaining portions are supported on sliding disk bearings. The girder is fixed at only one end; all expansion and contraction occurs at the opposite end, requiring an expansion joint with a 26-in. (660-mm) movement capability--the largest of any as of the time it was installed (1978). To control permanent deformations and thereby minimize the size of bearings and joints, the designer called for: (1) the girder to be precast in segments; (2) a minimum 28-day compressive strength of 6000 psi (41 MPa); (3) special requirements for curing the segments; and (4) the segments to be stored for at least 90 days prior to erecting them. The sequence of construction complicated the installation of the bearings. The bridge was built in stages with each stage having a different temporary fixed bearing. Thus, the setting (offset) of each bearing had to provide for the permanent deformations that the partial-length girder would undergo before being incorporated into the final structure, as well as for the predicted temperature at that later date. Following seven years of service, the deformations in the girder and movements in the bearings and joints have been within the limits assumed in their design. All components are performing fully as intended.
10.14359/3471
SP70-18
January 1, 1981
A. R. Price
70
In the United Kingdom normal gap-graded dense bituminous surfacing is usually laid on bridge decks. At the expansion gap, below pavement (buried) joints have been widely used to provide a smooth and continuous running surface and for ease of resurfacing. On all-concrete structures this type of joint has been used successfully but on steel/concrete composite decks there have been premature failures, particularly when there is a large volume of commercial vehicles. A survey and field trials investigated the factors influencing the performance and the requirements for buried joints. Measurements established that dynamic traffic loading produced movements and rotations at the expansion gap that were detrimental to the performance of buried joints, particularly on composite structures. It was also found that restraints at the bearings lower the centre of rotation and so increased the joint opening. The survey showed that only limited improvements in joint performance could be obtained from modifications to the design. Trials were therefore made on a 600m length of motorway viaduct with modified surfacings. It was found that a rubberised bitumen and a high penetration bitumen both showed a substantial improvement compared with normal bitumen. Delays caused one carriageway of the trial to be laid in cold, wet and frosty conditions and the subsequent performance was very inferior to the carriageway laid in dry warm weather. Workmanship and weather during laying both have a major effect on the behaviour of the joint. Alternative types of joint with flexible surfacing materials which are able to absorb all joint movements gave a good performance where conventional buried joints have proved unsatisfactory
10.14359/17416
SP70
Editor: Stewart C. Watson
SP70 The proceedings of the World Congress on Joint Sealing and Bearing Systems for Concrete Structures reports on new developments and case histories. General subjects include: movements and forces, bearings, joints, materials, architectural applications, seismic considerations, pavements, and research and development.
10.14359/14122
SP70-33
Egons Tons and Starr Kohn
Graphical procedures are presented for optimum dimensioning of a joint-slab-sealant system coupled with material properties. PART 1 covers an approach for sealing with compression type sealants while PART 2 concentrates on molded-in-place sealants. Horizontal joint movements are emphasized in both cases. While the main emphasis is placed on concrete pavement joint sealing, the methods are also applicable to other joints, such as those in bridges or structures and even cracks. The procedures used to construct each set of curves are given so that the graphs can be adjusted for other joint or crack sealing applications. The paper also outlines areas where more work and data are needed.
10.14359/17431
Results Per Page 5 10 15 20 25 50 100