ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 10 Abstracts search results

Document: 

SP-307-06

Date: 

March 1, 2016

Author(s):

Ed McLean, Chris Ramseyer, and Seth Roswurm

Publication:

Symposium Papers

Volume:

307

Abstract:

In the modern transportation industry, nearly all bridge decks are constructed of concrete. Of the concrete bridge decks currently in service across the US, almost all contain large numbers of cracks. These cracks are the bane of deck longevity. They allow the ingress of salts that cause corrosion of the reinforcing steel, exacerbating concrete cracking and loss of structural capacity. A survey conducted several years ago by Folliard et al. (2004) for the FHWA found that more than 100,000 bridges suffered from early-age cracking. This paper presents a case study of bridge decks in Ohio and Michigan that are essentially crack-free. Some of these bridge decks are located on high volume highways/interstates and are up to 30 years of age. In addition, several of these bridges have adjacent standard Portland cement concrete sister bridges built at the same time, with identical spans and construction details handling traffic flowing in the opposite direction. Comparison of these bridges offers unique insight into a simple, effective solution for mitigation of bridge deck cracking.

DOI:

10.14359/51688879


Document: 

SP-307-09

Date: 

March 1, 2016

Author(s):

Alma Reyes

Publication:

Symposium Papers

Volume:

307

Abstract:

Expansive component systems provide the possibility to control the effects of concrete drying shrinkage in civil engineering applications, promoting durability for new construction and repair alternatives. Drying shrinkage is a natural consequence of concrete upon water loss after hardening. When there are restrictions such as internal reinforcement, adjacent structural elements and subgrade friction, concrete drying shrinkage can lead to cracking if no provisions are considered on the mix design or on the construction procedure. Expansive component Type G reacts chemically with Portland cement and water in the concrete mix to produce calcium hydroxide platelet crystals, which after setting, produce a volume increase. Providing internal or external restrictions, a concrete, that contains an expansive component system, can induce compression stress in the concrete mass and tension stress in the reinforcement. Concrete cracking can be reduced because such induced compression stress counteracts the tensile stress in the concrete mass caused by drying shrinkage. This article comprises a variety of applications of concrete, including the expansive component Type G, in Mexico as a solution means of improved functionality and durability of modern construction.

DOI:

10.14359/51688882


Document: 

SP-307-04

Date: 

March 1, 2016

Author(s):

Shideh Shadravan, Thomas H.-K. Kang and Chris Ramseyer

Publication:

Symposium Papers

Volume:

307

Abstract:

This paper reexamines the authors’ experimental results on the dimensional stability of concrete slab-on-ground under a variety of environmental conditions. The experiments considered the dimensional properties of concrete slab materials using both Demec targets and vibrating wire strain gages. Realistic slab-on-ground sections were investigated in this study in that the concrete slabs were exposed to a controlled environment on the top surface and to actual ground moisture on the bottom surface. The concrete materials tested were normal Portland cement concrete (PCC), high strength concrete (HSC), concrete with shrinkage reducing admixtures (SRA), and concrete with calcium sulfoaluminate cement (CSA). The compiled database contains: 1) standard concrete material test results; 2) joint movements in concrete slab-on-ground; and 3) internal relative humidity and temperature through the slab-on-ground depth. The experimental results revealed that CSA was quite stable with little long-term shrinkage/cracking or warping, whereas PCC and HSC had continuing crack growth during 600 days of curing. The SRA exhibited a modest reduction in shrinkage/crack at the early stage, and while this decrease extended for the length of the testing no further decrease in the shrinkage growth or sectional stability was noted when compared to PCC at the end of 2 years. Evaluation of the vibrating wire strain gage method of measuring long term concrete shrinkage was found to be less prone to user bias and more accurate than the Demec target method or the ASTM C157 method.

DOI:

10.14359/51688877


Document: 

SP-307-01

Date: 

March 1, 2016

Author(s):

Edward K. Rice

Publication:

Symposium Papers

Volume:

307

Abstract:

This short work details the history of Type K shrinkage compensating cement.

DOI:

10.14359/51688874


Document: 

SP307

Date: 

March 1, 2016

Publication:

Symposium Papers

Volume:

307

Abstract:

Editor: Chris Ramseyer

With the exception of #9, these Papers were presented at: ACI National Convention, Fall 2012 Toronto, Canada. In the Technical Session Shrinkage Compensating Concrete – Past, Present, and Future Part 1 and Part 2.

This publication is dedicated to Edward K. Rice

Ed Rice has been involved in Shrinkage Compensating Concrete from its inception. As co-founder and President of T.Y. Lin and Associates from 1952 through 1970 Ed Rice promoted the novel use of concrete and concrete systems. As early as 1956 T.Y. Lin and Ed Rice provided the necessary funding for fundamental research by Alex Klein on expansive cements. This research led to the development of the Chemically Prestressed Concrete (CPC) co that was primarily in the pipe and roof slab business. In 1965 under Ed Rice’s direction as Chairman of CPC, Ed licensed Kaiser to run the first full scale burn at their Cushenberry cement plant and commercially produce the first shrinkage compensating concrete clinker in the world.

In the fifty years since the first production run of shrinkage compensating cement Ed Rice has consistently worked to advance concrete cement technology. He holds 22 US patents in the field of concrete and building technology. For the last forty years Ed Rice has led CTS Cement Manufacturing Co., the largest producer of shrinkage compensating cement in North America. Often Ed Rice worked behind the scenes helping to promote shrinkage compensating concrete and the work of younger engineers. Ed Rice has been a consistent and steady advocate for both increased research on the behavior of shrinkage compensating cements; and increased use of shrinkage compensating concrete to produce stable and durable concrete structures.

Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-307

DOI:

10.14359/51688862


12

Results Per Page